A team of scientists from LSU, NASA, the Universidad Nacional Autonoma de Mexico and other research organizations has discovered an area of Earth that is shockingly similar to the surface of Mars. This joint research effort has discovered clues from one of Earth’s driest deserts about the limits of life on this planet, and why past missions to Mars may have failed to detect life. The results of the group’s study were published this week in Science magazine, in an article titled “Mars-like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life.”
Black soot and snow: A warmer combination EurekaAlert!
New research from NASA scientists suggests emissions of black soot alter the way sunlight reflects off snow. According to a computer simulation, black soot may be responsible for 25 percent of observed global warming over the past century. Soot in the higher latitudes of the Earth, where ice is more common, absorbs more of the sun’s energy and warmth than an icy, white background. Dark-colored black carbon, or soot, absorbs sunlight, while lighter colored ice reflects sunlight. Soot in areas with snow and ice may play an important role in climate change.
Desert dust enables algae to grow EurekaAlert!
Biologists from the Royal Netherlands Institute for Sea Research have demonstrated that desert dust promotes the growth of algae. Scientists had already assumed that the iron in desert dust stimulated algal growth, but this has now been demonstrated for the first time. The researchers have published their findings in the December issue of the Journal of Phycology. The biologists cultured two species of diatoms in seawater originating from the iron-depleted Southern Ocean, the sea around the South Pole. The algae were supplied with dust from a desert in Mauritania and a desert in Namibia. The growth of algae which received a lot of dust was compared with that of algae which received little or no dust.
Sand ripples taller on Mars EurekaAlert!
Mars is kind of like Texas: things are just bigger there. In addition to the biggest canyon and biggest volcano in the solar system, Mars has now been found to have sand ripples twice as tall as they would be on Earth. Initial measurements of some of the Red Planet’s dunes and ripples using stereo-images from the Mars Orbiter Camera onboard the Mars Global Surveyor have revealed ripple features reaching almost 20 feet high and dunes towering at 300 feet.