MarsNews.com
November 3rd, 2016

Egg Rock: Lessons from the iron meteorite Curiosity found on Mars

The dark, smooth-surfaced rock at the center of this Oct. 30, 2016, image from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover was examined with laser pulses and confirmed to be an iron-nickel meteorite. It is about the size of a golf ball. Credit: NASA/JPL-Caltech/MSSS

The dark, smooth-surfaced rock at the center of this Oct. 30, 2016, image from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover was examined with laser pulses and confirmed to be an iron-nickel meteorite. It is about the size of a golf ball. Credit: NASA/JPL-Caltech/MSSS

It’s been more than four years since NASA’s Curiosity rover landed on Mars, enabling researchers to study the shape and composition of the planet’s landscape in a mission that had originally been planned to last less than two years. Even as the rover’s instruments begin to show signs of wear and tear, however, scientists are still making discoveries.

For the first time on Mars, researchers used a spectrometer to zap an object the size of a golfball with a laser this week to confirm that it is an iron-nickel meteorite that fell to the planet’s surface, according to NASA and the Jet Propulsion Laboratory. Although such objects are common on Earth and to be expected on the Red Planet as well, studying them in tandem with what we already know about the planet’s atmosphere could reveal a wealth of new information about the history of the solar system.

Horton Newsom, a researcher from the University of New Mexico, Albuquerque, said the object, known as Egg Rock, could carry within its core information that differs from asteroids currently being studied.

September 13th, 2016

Mars Rover Views Spectacular Layered Rock Formations

This view from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover shows a hillside outcrop with layered rocks within the “Murray Buttes” region on lower Mount Sharp.

The layered geologic past of Mars is revealed in stunning detail in new color images returned by NASA’s Curiosity Mars rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp. The new images arguably rival photos taken in U.S. National Parks.

Curiosity took the images with its Mast Camera (Mastcam) on Sept. 8. The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future.

“Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California.

August 10th, 2016

NASA Rover Game Released for Curiosity’s Anniversary

As Curiosity marks its fourth anniversary (in Earth years) since landing on Mars, the rover is working on collecting its 17th sample. While Curiosity explores Mars, gamers can join the fun via a new social media game, Mars Rover.

On their mobile devices, players drive a rover through rough Martian terrain, challenging themselves to navigate and balance the rover while earning points along the way. The game also illustrates how NASA’s next Mars rover, in development for launch in 2020, will use radar to search for underground water.

“We’re excited about a new way for people on the go to engage with Curiosity’s current adventures on Mars and future exploration by NASA’s Mars 2020 rover too,” said Michelle Viotti, manager of Mars public engagement initiatives at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Using social networks, the user can share the fun with friends. The interest that is shared through gameplay also helps us open a door to deeper literacy in science, technology, engineering and mathematics.” JPL collaborated with GAMEE, a network for game-players, for development of the game, called Mars Rover.

For more information about how the Mars Rover game relates to exploration by NASA’s Mars rovers, visit:

mars.nasa.gov/gamee-rover

May 15th, 2016

The seasons on Mars: NASA’s Curiosity rover paints a picture

NASA’s Curiosity rover completed its second Martian year – 687 Earth days – on May 11, meaning that its instruments have now tasted the red planet’s tendencies for two full orbits of the sun.

This allows scientists to begin separating unique events from those that recur year by year, laying the foundation for an understanding of seasonal variations in a host of different characteristics.

The fresh insights come at a time when talk of a manned mission to Mars is edging away from the arena of science fiction and towards the realm of human endeavor.

February 2nd, 2016

Mars Curiosity rover gets into VR with a Facebook 360 video

This is Curiosity’s latest selfie in Bagnold Dunes, composed of 57 different photos captured on January 19. To test the sands, the rover recently dug one of its 20-inch wheels into a nearby dune. You can see the tire marks in the center.

NASA has posted a Facebook 360 video taken by the Mars Curiosity rover from the surface of Mars that Mark Zuckerberg himself re-posted and called “neat.” (A one ton, nuclear buggy takes takes a panoramic video from Mars that you can view in a VR headset, and all you got is “neat?” Get a thesaurus, Mark!) Zuckerberg added that the video was stitched together by Facebook’s 360 degree video team, and is made up of 57 separate stills — in fact, it’s more like a panorama than a video. The images were snapped by the rover’s robotic arm-mounted Mars Hand Lens Imager (MAHLI) on the northwestern flank of Mount Sharp, and show the steep Namib sand dunes.

January 7th, 2016

U.S. lab generates first space-grade plutonium sample since 1980s

File photo of a plutonium-238 pellet. Credit: Los Alamos National Laboratory

For the first time in nearly 30 years, the U.S. Department of Energy has produced a sample of plutonium-238, the radioactive isotope used to power deep space missions, good news for future NASA space probes heading to destinations starved of sunlight.

The 50-gram (0.1-pound) sample is a fraction of the plutonium needed to fuel one spacecraft power generator, but the Energy Department said the material represents the first end-to-end demonstration of plutonium-238 production in the United States since 1988.

The DOE made the new batch of plutonium-238 at Oak Ridge National Laboratory in Tennessee.

October 16th, 2015

Comet’s Close Encounter with Mars Dumped Tons of Dust on Red Planet

Sebastian Voltmer in Germany used the iTelescope at Siding Spring Observatory, Coonabarabran, New South Wales, Australia to capture Comet C/2013 A1 passing very close to Mars on 19 October 2014. He used their Takahashi FSQ ED refractor and SBIG STL11000M camera for four 120-seconds exposures; RGB 120-seconds (Bin 2). Image credit: © Sebastian Voltmer.

 

Comet Siding Spring’s close shave by Mars last year provided a rare glimpse into how Oort Cloud comets behave, according to new research.

The comet flew by Mars at a range of just 83,900 miles (135,000 kilometers) — close enough for the outer ridges of its tenuous atmosphere to pummel the planet with gas and dust.

In just a short flyby, the comet dumped about 2,200 to 4,410 lbs. (1,000 to 2,000 kg) of dust made of magnesium, silicon, calcium and potassium — all of which are rock-forming elements — into the upper atmosphere, the new study found.

October 15th, 2015

Did Mars once have rivers? Pebbles say yes.

Researchers have used the shape of rounded Martian pebbles to extrapolate how far they must have traveled down an ancient riverbed on the Red Planet. The analysis suggests they moved approximately 30 miles (50 kilometers), indicating that Mars once had an extensive river system.

The shape of some Martian pebbles suggests these rocks once rolled dozens of miles down a river, hinting that ancient Martian waterways were stable and not merely ephemeral streams, researchers say.

NASA’s Mars rover Curiosity discovered the small, round stones near its landing site in Gale Crater on the Red Planet in 2013. Researchers previously determined that these stones resemble those found in rivers on Earth, which become round as they slide, roll and hop down riverbeds and scrape other rocks.

Now, a new study suggests the Martian rocks rolled in the river for quite a while — a finding that should help scientists reconstruct what ancient Mars was like and shed light on the Red Planet’s past potential to support life, study team members said.

October 8th, 2015

NASA’s Curiosity Rover Team Confirms Ancient Lakes on Mars

http://www.jpl.nasa.gov/spaceimages/images/largesize/PIA19839_hires.jpg

Strata at Base of Mount Sharp

A new study from the team behind NASA’s Mars Science Laboratory/Curiosity has confirmed that Mars was once, billions of years ago, capable of storing water in lakes over an extended period of time.

Using data from the Curiosity rover, the team has determined that, long ago, water helped deposit sediment into Gale Crater, where the rover landed more than three years ago. The sediment deposited as layers that formed the foundation for Mount Sharp, the mountain found in the middle of the crater today.

“Observations from the rover suggest that a series of long-lived streams and lakes existed at some point between about 3.8 to 3.3 billion years ago, delivering sediment that slowly built up the lower layers of Mount Sharp,” said Ashwin Vasavada, Mars Science Laboratory project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and co-author of the new Science article to be published Friday, Oct. 9.

August 3rd, 2015

Why Your Brain Thinks This Picture Shows a Giant, Martian Crab Monster TIME

55bef7401d00002f0014396a

It’s definitely not a giant crab lurking in a cave. In fact, it’s just one more example of the sometimes whimsical, always spooky phenomenon known as pareidolia, or the tendency of the brain to see familiar shapes—especially faces—emerging from random patterns.

In fairness to the folks freaked out by the current image, a crab is not a face and the brain has to work a little harder to force that image out of the background shapes, but it does the job all the same—just as it will interpret a branch in the underbrush as a snake or a shadow in the closet as a monster. Your pattern recognition regions are not the smartest part of your brain, but they’re not designed to be. They only have to be right once, and on the off chance you ever do run across a bear in the woods or a crab monster on Mars, you’ll have your fusiform gyri to thank for keeping you alive.