MarsNews.com
June 18th, 2018

Pushing the limit: could cyanobacteria terraform Mars?

Cyanobacteria could be used to render the atmospheres of other planets suitable for human life.
Credit: DETLEV VAN RAVENSWAAY/GETTY IMAGES

The bacteria that 3.5 billion years ago were largely responsible for the creation of a breathable atmosphere on Earth could be press-ganged into terraforming other planets, research suggests.

A team of biologists and chemists from Australia, the UK, France and Italy has been investigating the ability of cyanobacteria – also known as blue-green algae – to photosynthesise in low-light conditions.

Cyanobacteria are some of the most ancient organisms around, and were responsible, though photosynthesis, for converting the Earth’s early atmosphere of methane, ammonia and other gases into the composition it sustains today.

The photochemistry used by the microbes is pretty much the same as that used by the legion of multicellular plants that subsequently evolved. The process involves the use of red light. Most plants are green because chlorophyll is bad at absorbing energy from that part of the visible light spectrum, and thus reflects it.

Light itself, however, is a critical component for photosynthesis, which is why plants (and suitably equipped bacteria) fail to grow in very dark environments. Just how dark such environments need to be before the process becomes impossible was the focus of the new research.

The team of scientists, which included Elmars Krausz from the Australian National University in Canberra, tested the ability of a cyanobacterial species called Chroococcidiopsis thermalis to photosynthesise in low light.

Previously it had been widely thought that the necessary photochemistry shut down at a light wavelength of 700 nanometres – a point known as the “red limit”.

May 31st, 2018

Flying in Martian Skies: NASA’s 2020 Rover Mission Will Include Tiny Helicopter

Artist’s conception of the autonomous, drone-like Mars Helicopter, which will be sent to Mars along with the 2020 rover. Image Credit: NASA/JPL-Caltech

Excitement has been building for NASA’s next rover mission to Mars, scheduled to launch sometime in 2020. Although it looks a lot like the current Curiosity rover, its mission will be to search directly for possible evidence of past life. Curiosity, on the other hand, is studying the ancient habitability of Gale crater, which we now know used to hold a lake or series of lakes, focusing more on geology than biology. And now the upcoming 2020 mission just got even better – NASA has approved the inclusion of a tiny drone-like helicopter to accompany the rover!

This is something never done before, and assuming it’s successful, will be the first time that Mars has been robotically explored by something other than an orbiter, lander or rover.

The Mars Helicopter will be a small, drone-like autonomous rotorcraft, designed specifically for Mars’ very thin atmosphere; it will provide a unique and exciting new way to see the Martian landscape as never before – a bird’s-eye view, if you will. And of course, it’s just very cool.

April 13th, 2018

‘Kilopower’ Could Power a Mars Colony and Deep Space Missions

Science fiction writer Douglas Adams said it best — “Space is big. Really big. You just won’t believe how vastly, hugely, mind-bogglingly big it is.” Getting from one point to another takes a very, very long time, especially with our present technology. Right now, the closest neighboring star system is roughly 4.24 light years away. With our current spacecraft, it would take more than 81,000 years to reach it!

Unfortunately, NASA doesn’t currently have a solution for shortening that journey in any meaningful way, but the space agency might just have a way to power an interstellar mission. What is the Kilopower Project, and what could it mean for the future of spaceflight?

A reliable power source is essential to survival in space — or on any currently uninhabited planet. The Kilopower project utilizes nuclear fission, with small portable reactors that can handle any rough or unfriendly environment. Prototypes are currently being tested, and if they are successful, they will be able to handle everything from the cold vacuum of space to the dust storms of Mars.

Rather than using plutonium, like previous spacecraft reactors, the Kilopower devices run on uranium. Each unit is designed to create about 10 kilowatts (10,000 watts) of power, and if more is needed, multiple Kilopower reactors can be daisy-chained together. For comparison, the average home in the United States uses roughly 10,700-kilowatt hours a year, roughly equivalent to using one Kilopower reactor for about 42 days. Power needs for human habitats on other planets would be higher, due to the need to produce things like oxygen, heat and water, but many Kilopower reactors could efficiently meet the needs of a human colony on the Moon or Mars.

February 13th, 2018

Piece of Mars is Going Home

A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. This slice will likely be used here on Earth for testing a laser instrument for NASA’s Mars 2020 rover; a separate slice will go to Mars on the rover.

A chunk of Mars will soon be returning home.

A piece of a meteorite called Sayh al Uhaymir 008 (SaU008) will be carried on board NASA’s Mars 2020 rover mission, now being built at the agency’s Jet Propulsion Laboratory in Pasadena, California. This chunk will serve as target practice for a high-precision laser on the rover’s arm.

Mars 2020’s goal is ambitious: collect samples from the Red Planet’s surface that a future mission could potentially return to Earth. One of the rover’s many tools will be a laser designed to illuminate rock features as fine as a human hair.

That level of precision requires a calibration target to help tweak the laser’s settings. Previous NASA rovers have included calibration targets as well. Depending on the instrument, the target material can include things like rock, metal or glass, and can often look like a painter’s palette.

But working on this particular instrument sparked an idea among JPL scientists: why not use an actual piece of Mars? Earth has a limited supply of Martian meteorites, which scientists determined were blasted off Mars’ surface millions of years ago.

These meteorites aren’t as unique as the geologically diverse samples 2020 will collect. But they’re still scientifically interesting — and perfect for target practice.

January 30th, 2018

Evonik and Siemens to generate high-value specialty chemicals from carbon dioxide and eco-electricity

In the fermentation process–here at lab scale–, special bacteria are converting CO-containing gases to valuable chemicals through metabolic processes. (Copyright: Evonik Industries AG)

Germans lead the world in implementing renewable energy infrastructure. But sometimes, there is too much of a good thing: the inability to store excess electricity reduces the efficiency of the renewable energy installations.

Meanwhile, carbon dioxide levels continue to rise, and hardly anyone doubts anymore that projects to pull carbon dioxide emissions out of the air will be a necessary transitional measure if the population of humans on Earth hope to continue energy-spurred growth while converting to renewable energy sources.

The Rheticus project offers solutions for both conundrums. Researchers from two German industrial giants, Siemens and Evonik, just announced that they will team up to demonstrate the feasibility of “technical photosynthesis.” The idea is to use eco-electricity and harness the power of nature to convert CO2 into more complex chemical building blocks, like the alcohols butanol and hexanol.

December 19th, 2017

NASA creates amazing ‘chain mail’ wheel for future Mars rovers

Engineer Colin Creager attaches the latest version of the SMA Spring Tire to a test rig in the lab. Imaging Technology Center at NASA Glenn

Reinventing the wheel is generally considered a bad idea. But engineers at NASA’s Glenn Research Center in Cleveland are doing just that — designing an entirely new wheel that will give upcoming Mars rovers the ability to drive long distances on the Red Planet without sustaining damage.

The wheel, made of an ultra-flexible metal mesh, is designed to deform as it rolls over sharp rocks and other irregular features on the Martian surface — and then snap back to its original shape.

NASA hopes the wheel will be more durable than the wheels on NASA’s Curiosity rover. Selfies snapped by Curiosity in 2013 showed that the treads on the rover’s aluminum wheels had sustained significant damage after only about a year on Mars.

November 28th, 2017

Worms born in Martian soil suggest farming on Mars is possible BGR

The prospect of a human colony on Mars has rapidly moved from science fiction to reality in recent years, with space agencies like NASA, ESA, and others openly discussing the possibility of manned missions to the red planet and eventually the establishment of full-on settlements. Of course, a self-sustaining Mars colony would need the same things we need here on Earth, including the ability to farm, and scientists in the Netherlands are now reporting that they’ve taken a big step towards that goal by successfully getting worms to reproduce in Mars-like soil.

November 18th, 2017

Robert Zubrin: Demonstration of Reverse Water-Gas Shift System The Mars Society

Originally posted on Facebook by Dr. Robert Zubrin, President of the Mars Society and also leads a for-profit company Pioneer Energy

Piloted Mars Mission RWGS System Demonstrated
Robert Zubrin
November 16, 2017

From November 14-15 2017 the R&D team at Pioneer Energy, a spinoff company of Pioneer Astronautics, conducted a 24 hour non-stop demonstration of an integrated Reverse Water Gas Shift-Methanol system. We also did a 5 hour demonstration of a system for turning the methanol into dimethyl ether. All tests were witnessed by judges from the X-Prize Carbon competition.

The RWGS was run at an average rate of 70 liters per minute CO2 and hydrogen feed. It averaged about 99% efficiency in reducing CO2 to CO, producing an exhaust that was roughly 99% CO and 1% CO2. Conversions as high as 99.8% were achieved, but system parameters were adjusted to decrease efficiency to 99% because 1% CO2 is desired in the methanol synthesis feed to improve system kinetics. Approximately 81 kg of water was produced by the RWGS in the course of the 24 hour run.

The CO from the RWGS was then fed into the methanol synthesis unit, where it was reacted with hydrogen to produce approximately 105 kg of methanol in the course of the 24 hour run. Some of the methanol product was then taken to the dimethyl ether synthesis unit, where it produced and captured in liquid form 11.8 kg of DME over a 5 hour period, for a daily production rate of 57 kg per day. Approximately 17.7 kg net of methanol was consumed to make the 11.8 kg of DME, for a combined conversion and capture efficiency of about 93%. (100% efficiency would have resulted in 12.72 kg DME, because two methanols react to produce one DME and one H2O.)

It may be noted that if the water produced by the system were electrolyzed, it would produce 72 kg of oxygen per day, or 36 metric tons over a 500 period. The methanol system would produce 52.5 metric tons of methanol. The DME system would produce 28.5 tons of DME.

Oxygen burns with DME at a stoichiometric ratio of 2.087. So if the 28.5 tons of DME produced were combined with 59.5 tons of oxygen, a total of 88 tons of useful bipropellant would be available. Alternatively, if oxygen is viewed as the limiting propellant, by combining the 36 tons of oxygen with 20 tons of DME (to run slightly fuel rich) 56 tons of useful bipropellant would be available. If the oxygen product were used in a LOX/RP engine burning at 2.8:1, at total of 49 tons of useful bipropellant would be available.

In any case, more propellant would be produced by such a system than that required for the ascent vehicle in the NASA design reference mission. Finally, it may be noted that if the RWGS system were run in parallel in a Sabatier Electrolysis (S/E) system sized to produce 48 kg of CH4 and 96 kg of O2 per day, a total of 24 tons of methane and 84 tons of oxygen would be produced, which is sufficient to fly the Mars Direct mission.

ISRU has entered a new world.

Above is a photo of the team that did it.

-Robert Zubrin

September 28th, 2017

Lockheed Martin unveils fully reusable crewed Martian lander The Mars Society

Mars Base Camp Lander

Mars Base Camp Lander

NASA’s goal to reach Mars is just over a decade away, and Lockheed Martin revealed Thursday how humans might soon walk upon the red planet’s surface.

Lockheed Martin gave CNBC a first look at its new spacecraft prototype, which the company will unveil Thursday at this year’s International Astronautical Congress in Adelaide, Australia.

“This is a single-stage, completely reusable lander which will be able to both descend and ascend,” said Lockheed Martin’s Robert Chambers.

Chambers is a senior systems engineer at the aerospace and defense giant, helping to lead the Mars Base Camp project. The concept is Lockheed Martin’s vision for what may come after NASA’s Deep Space Gateway mission, which will begin in the early 2020s.

Starting with testing near the moon under the NextSTEP program, NASA aims to develop the infrastructure needed to send people to Mars. Lockheed Martin is one of six U.S. companies under NASA contract to build prototypes for NextSTEP.

May 31st, 2017

NASA’s Developing a Whopping 40 Technologies for Its Mars Mission The Mars Society

The NASA Nuke Cart.

The NASA Nuke Cart.

Getting astronauts to Mars will be far from a cakewalk. In order to safely land a crewed ship on the surface of the red planet, the agency needs to invent things that don’t yet exist. And we’re not talking about just one or two or five new gadgets. NASA is working on a staggering 40 new technologies in order to meet a 2033 deadline for launching a crew to Mars that can live on the planet for at least a few months.
Yes, Thomas Edison was awarded thousands of patents, but the man wasn’t trying to get human beings to safely land on the surface of another world sitting 33.8 million miles away, separated by a cold, eternal vacuum. Each of those 40 technologies is a hell of a lot more complex than a light bulb.

Stephen Jurczyk, the associate administrator of NASA’s Space Technology Mission Directorate, is the person in charge of making sure NASA’s engineers stay on task and get these technologies ready on time. He seems optimistic NASA can pull off a trip to Mars, but he says the agency just needs to remain flexible while moving forward. “This is a tremendous challenge, and we absolutely can do this,” he tells Inverse.