MarsNews.com
October 14th, 2019

Inside NASA’s plan to use Martian dirt to build houses on Mars

A rendering of Marsha, one of the options NASA collaborators have come up with for housing on the Red Planet. The tall, slender shape maximizes interior space and lends itself to printing.Courtesy AI Spacefactory

People settling on Mars will to some degree have to live off the land. At its closest, our neighboring planet lies 35 million miles away. Transporting supplies there will cost roughly $5,000 per pound and take at least six months using current technology. Better to enlist the natural resources of their new home when possible, an approach called in situ resource utilization. “It totally changes the logistics of a mission,” says Advenit Makaya, a materials engineer who develops processes like 3D printing at the European Space Agency. “You don’t have to bring everything with you.”

Humans on the Red Planet might draw power from the sun, mine water from buried ice, and harvest oxygen from the atmosphere. With NASA’s encouragement, architects, engineers, and scientists are exploring how early residents might use recycled waste and the planet’s loose rock and dust, called regolith, to craft tools, erect homes, pave launchpads and roads, and more.

Rovers and probes have revealed enough about Martian geology for us to start figuring out how that might work. The surface contains an abundance of iron, magnesium, aluminum, and other useful metals found here at home. Scientists also believe the crust consists largely of volcanic basalt much like the dried lava fields of Hawaii.

October 10th, 2019

NASA’s New Spacesuit: The xEMU

Exploration Extravehicular Mobility Unit (xEMU): EVA Spacesuit Technology and Design #SuitUp

NASA has announced the details of the first new spacesuit since the Space Shuttle, which will allow humans to return to the lunar surface and maybe even travel further beyond. But why does NASA need new spacesuits when they already have some in use?

When the Space Shuttle entered service, it came with a new spacesuit: the Extravehicular Mobility Unit (hence EMU). It remains the main operational spacesuit for NASA, despite its 30-year-old parts and even older design, and has allowed for many feats of human engineering. However, with this storied history has come deterioration: out of the original fleet of 14 flight-ready suits, only 8 remain thanks to a variety of accidents.

This inability to use current hardware has made the development of a new suit a major problem for the Artemis Program’s ambitions. As such, NASA has focused its resources on one suit design, as opposed to the many it was designing and studying previously: the xEMU, or Exploration Extravehicular Mobility Unit.

Building on the EMU’s basic design, the new xEMU will incorporate many design features of the 21st century. Compared to the old A7L suits from Apollo, the new suits will be more flexible, adaptable and much easier to put on, with multiple new features. These include a back entry port (similar to the port on Russia’s Orlan suit), modular design, high-speed data transceiver, sacrificial helmet shield (to protect from lunar dust), and HD video system, among many others.

October 9th, 2019

Small satellite launcher Virgin Orbit announces plans to send tiny vehicles to Mars

Cosmic Girl releases LauncherOne mid-air for the first time during a July 2019 drop test.

Virgin Orbit has big plans to send small spacecraft to Mars, as soon as 2022. The company — an offshoot of Richard Branson’s space tourism company Virgin Galactic — announced today that it is partnering with nearly a dozen Polish universities and a Polish satellite maker called SatRevolution to design up to three robotic missions to the Red Planet over the next decade.

If successful, these missions could be the first purely commercial trips to Mars. Up until now, only four organizations have ever successfully made it to the Red Planet, and all of them have been government-led space organizations. Commercial companies like SpaceX have vowed to send spacecraft to Earth’s neighbor, but so far, Mars has been the sole domain of nation-states. “It’s still a pretty small club, and none of them have been something quite like this where it’s a consortium of companies and universities,” Will Pomerantz, the vice president of special projects at Virgin Orbit, tells The Verge. Plus, all of these space agency vehicles have typically been large — comparable to the size of buses and cars.

But the Virgin Orbit team was inspired to take on this endeavor thanks to NASA’s recent InSight mission, which sent a lander to Mars in November of 2018. When the InSight lander launched, two small standardized spacecraft the size of cereal boxes — known as CubeSats — launched along with it, and traveled all the way to Mars trailing behind the vehicle. It marked the first time that CubeSats, or any small spacecraft of that size, had journeyed beyond the orbit of Earth and out into deep space. The pair of satellites performed exactly as intended, relaying signals from InSight back to Earth, proving that small satellites could be valuable on deep space missions for very low costs.

October 1st, 2019

NASA Announces New Tipping Point Partnerships for Moon and Mars Technologies

Astrobotic is one of 14 companies selected for NASA’s Tipping Point solicitation. This illustration depicts CubeRover, an ultra-light, modular and scalable commercial rover.
Credits: Astrobotic/Carnegie Mellon University

NASA has selected 14 American companies as partners whose technologies will help enable the agency’s Moon to Mars exploration approach.

The selections are based on NASA’s fourth competitive Tipping Point solicitation and have a combined total award value of about $43.2 million. This investment in the U.S. space industry, including small businesses across the country, will help bring the technologies to market and ready them for use by NASA.

“These promising technologies are at a ‘tipping point’ in their development, meaning NASA’s investment is likely the extra push a company needs to significantly mature a capability,” said Jim Reuter, associate administrator of NASA’s Space Technology Mission Directorate (STMD). “These are important technologies necessary for sustained exploration of the Moon and Mars. As the agency focuses on landing astronauts on the Moon by 2024 with the Artemis program, we continue to prepare for the next phase of lunar exploration that feeds forward to Mars.”

The selections address technology areas such as cryogenic propellant production and management, sustainable energy generation, storage and distribution, efficient and affordable propulsion systems, autonomous operations, rover mobility, and advanced avionics.

September 30th, 2019

The rocket Elon Musk wants to send to Mars is almost ready to launch

SpaceX’s Starship spacecraft at the Boca Chica facility in Texas
Loren Elliott/Getty

Elon Musk has said that his Starship spacecraft – which is designed to carry people to the moon and Mars – will begin orbital test flights in less than two months. The SpaceX CEO made the comments during an evening presentation at Space X’s facility in Boca Chica, Texas, with the gigantic shiny spacecraft lit up in the background.

Musk first revealed plans for the rocket in 2016, updating them and calling the craft the Big Falcon Rocket (BFR) in 2017. Last year, he revised the design again and changed the rocket’s name to Starship. It is 118 metres tall and apparently capable of carrying about 100 people to the moon or Mars.

September 27th, 2019

Getting mac and cheese to Mars

WSU graduate student Juhi Patel, an author on the mac and cheese paper, puts packages of purple potatoes into an incubator, which speeds up the food quality changes at a consistent rate.

Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

If human beings go to Mars, they need food. Food that won’t spoil during the long travel between planets, and while they’re on the surface.

Currently, plastic packaging can keep food safe at room temperature for up to twelve months. The WSU researchers demonstrated in a recent paper in the journal Food and Bioprocess Technology they could keep ready-to-eat macaroni and cheese safe and edible with selected nutrients for up to three years.

“We need a better barrier to keep oxygen away from the food and provide longer shelf-life similar to aluminum foil and plastic laminate pouches,” said Shyam Sablani, who is leading the team working to create a better protective film. “We’ve always been thinking of developing a product that can go to Mars, but with technology that can also benefit consumers here on Earth.”

In addition to having space travel in mind, the researchers are working closely with the U.S. Army, who want to improve their “Meals Ready to Eat” (MREs) to stay tasty and healthy for three years.

In taste panels conducted by the Army, the mac and cheese, recently tested after three years of storage, was deemed just as good as the previous version that was stored for nine months.

September 13th, 2019

Bigelow Aerospace wants Mars trip to go through North Las Vegas

The Olympus, Bigelow’s massive space station prototype, is seen during a tour at Bigelow Aerospace in North Las Vegas on Thursday, Sept. 12, 2019. (Elizabeth Page Brumley/Las Vegas Review-Journal @EliPagePhoto)

Robert Bigelow is working to make sure the pathway to Mars runs through North Las Vegas.

Bigelow and his Bigelow Aerospace manufacturing facility played host to eight NASA astronauts and 60 engineers this week — some spending several days getting to know the company’s B330 autonomous, expandable space station.

The versatile inflatable module can be used as a transport vehicle on a lengthy space voyage, and can be attached by airlock to existing space stations or serve as a base of operations on a planet surface or the moon.

Bigelow and his staff hosted reporters Thursday to show off a mock-up of the B330 and provide updates on other Bigelow projects, including the Bigelow Expandable Activity Module (BEAM), which recently observed its third anniversary attached to the International Space Station.

The company also showed off Olympus, Bigelow’s massive space station prototype that’s only in concept stages today, but for which there is a life-size model within the production facility.

“We’re in competition with other companies that are going through this testing process where NASA has been sending in their astronauts to critique the good, the bad and the ugly of companies’ hardware, their enclosures, their architecture and whatever and that’s the process we’re going through,” Bigelow said in a briefing.

Bigelow said the company has made modifications based on the astronauts’ comments, changing a handhold grip or slide-out seating here or there.

September 4th, 2019

Soon you can test a cabin designed for Mars right here on planet Earth

Marsha in Mars with AI. plomp

Martian architecture has come a long way—the habitable future of the red planet is all about new materials, imaginative forms, and cutting edge concepts.

If it’s good enough for the atmosphere of Mars, it’s safe to assume that it’s good enough for Earth. That’s the thinking behind Tera, a high-tech eco cabin that’s modeled after a Martian habitat.

AI SpaceFactory designed the cylindrical cabin after Marsha, its concept for a Mars-ready dwelling that won first place in the final phase of NASA’s 3D-printed Mars Habitat Challenge. The luxury eco-cabin takes what was novel about the Marsha and reformatted it for Earth.

August 14th, 2019

Nuclear Reactor for Mars Outpost Could Be Ready to Fly by 2022

NASA and NNSA engineers lower the wall of the vacuum chamber around the Kilowatt Reactor Using Stirling TechnologY (KRUSTY system). The vacuum chamber is later evacuated to simulate the conditions of space when KRUSTY operates.
Credits: Los Alamos National Laboratory

A new type of nuclear reactor designed to power crewed outposts on the moon and Mars could be ready for its first in-space trial just a few years from now, project team members said.

A flight test is the next big step for the Kilopower experimental fission reactor, which aced a series of critical ground tests from November 2017 through March 2018. No off-Earth demonstration is on the books yet, but Kilopower should be ready to go by 2022 or so if need be, said Patrick McClure, Kilopower project lead at the Department of Energy’s (DOE) Los Alamos National Laboratory in New Mexico.

“I think we could do this in three years and be ready for flight,” McClure said late last month during a presentation with NASA’s Future In-Space Operations working group.

“I think three years is a very doable time frame,” he added, stressing that this is his opinion, not necessarily that of NASA, which is developing the Kilopower project along with the DOE.

August 7th, 2019

How This Video Game Company Will Help Keep Mars Astronauts Healthy

Illustration of an astronaut in front of Mars.GETTY

Level Ex isn’t your average video game company. Instead of stealing cars or street fighting, its games focus on the human body, creating video games for doctors and other medical professionals that want to practice complicated procedures. Now the company aims to help astronauts stay healthy on long-term missions, such as going to Mars.

On Wednesday, Level Ex announced that it received a year-long grant of an undisclosed amount from the Translational Research Institute for Space Health (TRISH), an organization that is led by Baylor College of Medicine’s Center for Space Medicine and is funded by NASA’s Human Research Program. The grant will provide funding for Level Ex to create a virtual simulation that can show how human anatomy and medical procedures will differ in space versus on Earth. Eventually, the company hopes to create medical video games that can be used to train astronauts on health situations they may encounter while in space. Level Ex has made many exciting products over its four year history, says founder and CEO Sam Glassenberg, but “this one is something special.”