MarsNews.com
September 17th, 2019

NASA, ESA officials seek formal approvals for Mars sample return mission

Artist’s concept of a Mars sample return mission, including a U.S.-built Mars Ascent Vehicle (left), a European-built Earth Return Orbiter (center), and a NASA-provided Earth Entry Vehicle (right). Credit: ESA/ATG medialab

After crystallizing a partnership to retrieve samples from the surface of Mars and return them to Earth, NASA and European Space Agency officials are seeking government funding commitments before the end of this year to carry out a multibillion-dollar robotic mission that could depart Earth with a pair of rocket launches as soon as 2026.

The Mars sample return mission, if approved, would pick up rock and soil samples collected by NASA’s Mars 2020 rover set for launch next year. The specimens would come back to Earth for detailed analysis in terrestrial laboratories, yielding results that scientists say will paint a far clearer picture of the Martian environment — today and in ancient times — than possible with one-way robotic missions.

A preliminary signal of support came earlier this year came in the White House’s fiscal year 2020 budget request, which proposed $109 million for NASA to work on future Mars missions, including a sample return. That’s after NASA received $50 million to study the sample return effort in 2019.

“The 2020 budget, the president’s recommended budget, included Mars sample return as a recommendation that we begin working on,” said Lori Glaze, director of NASA’s planetary science division, in a presentation Sept. 10 to the National Academies’ Committee on Astrobiology and Planetary Sciences. “We don’t know the status of that through congressional funding yet because we don’t have an appropriations bill yet, but we’re hopeful that there will be some appropriations there so we can move out on this activity.”

NASA unveiled a strategy to pursue a “lean” lower-cost Mars sample return mission in 2017, a plan Glaze said would allow scientists to get their hands on fresh samples from the Martian surface as soon as possible.

But even a lean Mars sample return mission will cost billions of dollars.

September 13th, 2019

Bigelow Aerospace wants Mars trip to go through North Las Vegas

The Olympus, Bigelow’s massive space station prototype, is seen during a tour at Bigelow Aerospace in North Las Vegas on Thursday, Sept. 12, 2019. (Elizabeth Page Brumley/Las Vegas Review-Journal @EliPagePhoto)

Robert Bigelow is working to make sure the pathway to Mars runs through North Las Vegas.

Bigelow and his Bigelow Aerospace manufacturing facility played host to eight NASA astronauts and 60 engineers this week — some spending several days getting to know the company’s B330 autonomous, expandable space station.

The versatile inflatable module can be used as a transport vehicle on a lengthy space voyage, and can be attached by airlock to existing space stations or serve as a base of operations on a planet surface or the moon.

Bigelow and his staff hosted reporters Thursday to show off a mock-up of the B330 and provide updates on other Bigelow projects, including the Bigelow Expandable Activity Module (BEAM), which recently observed its third anniversary attached to the International Space Station.

The company also showed off Olympus, Bigelow’s massive space station prototype that’s only in concept stages today, but for which there is a life-size model within the production facility.

“We’re in competition with other companies that are going through this testing process where NASA has been sending in their astronauts to critique the good, the bad and the ugly of companies’ hardware, their enclosures, their architecture and whatever and that’s the process we’re going through,” Bigelow said in a briefing.

Bigelow said the company has made modifications based on the astronauts’ comments, changing a handhold grip or slide-out seating here or there.

September 11th, 2019

Tributes to Terrorism Victims are on Mars

The piece of metal with the American flag on it in this image of a NASA rover on Mars is made of aluminum recovered from the site of the World Trade Center towers in the weeks after their destruction. Image credit: NASA/JPL-Caltech/Cornell University

In September 2001, Honeybee Robotics employees in lower Manhattan were building a pair of tools for grinding weathered rinds off rocks on Mars, so that scientific instruments on NASA’s Mars Exploration Rovers Spirit and Opportunity could inspect the rocks’ interiors.

That month’s attack on the twin towers of the World Trade Center, less than a mile away, shook the lives of the employees and millions of others.

Work on the rock abrasion tools needed to meet a tight schedule to allow thorough testing before launch dates governed by the motions of the planets. The people building the tools could not spend much time helping at shelters or in other ways to cope with the life-changing tragedy of Sept. 11. However, they did find a special way to pay tribute to the thousands of victims who perished in the attack.

An aluminum cuff serving as a cable shield on each of the rock abrasion tools on Mars was made from aluminum recovered from the destroyed World Trade Center towers. The metal bears the image of an American flag and fills a renewed purpose as part of solar system exploration.

Honeybee Robotics collaborated with the New York mayor’s office; a metal-working shop in Round Rock, Texas; NASA’s Jet Propulsion Laboratory in Pasadena, Calif.; and the rover missions’ science leader, Steve Squyres, at Cornell University, Ithaca, N.Y.

“It’s gratifying knowing that a piece of the World Trade Center is up there on Mars. That shield on Mars, to me, contrasts the destructive nature of the attackers with the ingenuity and hopeful attitude of Americans,” said Stephen Gorevan, Honeybee founder and chairman, and a member of the Mars rover science team.

September 10th, 2019

To live on Mars we’re probably going to have to eat bugs

The Martian Diet, by UCF’s Kevin Cannon and Daniel Britt (Image: eatlikeamartian.org)

The first million people to live on Mars won’t survive solely on vegetarian diets but will also need alternative proteins, including insects, to gain critical calories, according to research by University of Central Florida planetary scientists.

In the paper, Feeding One Million People on Mars, published in New Space, UCF researchers Kevin Cannon and Daniel Britt laid out what it would take to feed a Martian population based on what is known about Martian soil and the equipment needed to grow or make food on the red planet.

Unfortunately for fans of “The Martian,” it just isn’t sustainable to farm your way to a full crop of potatoes out of Martian soil — and human feces.

“If you think of the regolith (soil) on Mars it’s just fundamentally different than the soil on Earth you grow crops in,” Cannon said. “There’s no organic matter, there’s no bacteria and fungi.”

Cannon knows a lot about dirt from other worlds. As the founder of UCF’s Exolith Lab he creates Mars, moon and asteroid simulants.

It would take some work to transform Martian dirt into a more Earth-like soil. Because of that, Cannon and Britt say the more favorable method for Martian farming will be hydroponics.

September 6th, 2019

SpaceX Working With NASA to Find Mars Landing Sites for Starship

NASA/SpaceX/Victor Tangermann

We may not yet know how to get to Mars exactly, but — as to be expected from a company led by Elon Musk — SpaceX is already several steps ahead.

The private space company has leveraged images from NASA’s Mars Reconnaissance Orbiter, an imaging satellite that’s currently orbiting Mars, to determine a landing site for its in-development Starship spacecraft — despite the fact that the 180-foot spacecraft’s maiden voyage is still years out.

Space historian Robert Zimmerman came across images, with the labels “Candidate Landing Site for SpaceX Starship,” in data from the NASA orbiter.

The images of the Martian surface were taken by a high-res camera system called HiRISE onboard the orbiter, and uploaded to the University of Arizona’s website, the institution responsible for operating the camera.

SpaceX’s search for a landing site dates back to 2017, according to Teslarati. Over the past two years, the company has narrowed its search to a massive plains region called Arcadia Planitia. Five of the six potential landing sites shown in the new images are inside this zone.

September 4th, 2019

Soon you can test a cabin designed for Mars right here on planet Earth

Marsha in Mars with AI. plomp

Martian architecture has come a long way—the habitable future of the red planet is all about new materials, imaginative forms, and cutting edge concepts.

If it’s good enough for the atmosphere of Mars, it’s safe to assume that it’s good enough for Earth. That’s the thinking behind Tera, a high-tech eco cabin that’s modeled after a Martian habitat.

AI SpaceFactory designed the cylindrical cabin after Marsha, its concept for a Mars-ready dwelling that won first place in the final phase of NASA’s 3D-printed Mars Habitat Challenge. The luxury eco-cabin takes what was novel about the Marsha and reformatted it for Earth.

August 27th, 2019

Mars Missions Stop in Their Tracks as Red Planet Drifts to the Far Side of Sun

This animation illustrates Mars solar conjunction, a period when Mars is on the opposite side of the Sun from Earth. During this time, the Sun can interrupt radio transmissions to spacecraft on and around the Red Planet. Credit: NASA/JPL-Caltech

All of NASA’s spacecraft on Mars are about to find themselves on their own, running simplified routines and cut off from their masters on Earth. That’s because something big is about to come between the two planets — an electromagnetic energy source that’s too powerful to broadcast through or around: the sun.

During this period, known as the Mars solar conjunction, our home star and its corona pass between Earth and the Red Planet. Some radio signals might still get through, according to a statement from NASA’s Jet Propulsion Laboratory (JPL), but they aren’t reliable. Fortunately for all those distant robots, NASA knows this happens every couple years, and the machines are well prepared for the coming quiet period.

“Our engineers have been preparing our spacecraft for conjunction for months,” Roy Gladden, manager of the Mars Relay Network, said in the statement. “They’ll still be collecting science data at Mars, and some will attempt to send that data home. But we won’t be commanding the spacecraft out of concern that they could act on a corrupted command.”

August 23rd, 2019

NASA-JPL Names ‘Rolling Stones Rock’ on Mars

This animation illustrates NASA’s InSight lander touching down on Mars, its thrusters setting a rock in motion. A little bigger than a golf ball, the rock was later nicknamed “Rolling Stones Rock” by the InSight team in honor of The Rolling Stones. Credit: NASA/JPL-Caltech

For decades, the music of The Rolling Stones has had a global reach here on Earth. Now, the band’s influence extends all the way to Mars. The team behind NASA’s InSight lander has named a Martian rock after the band: ‘Rolling Stones Rock.’

The Rolling Stones – Mick Jagger, Keith Richards, Charlie Watts and Ronnie Wood – were delighted with the news and commented, “What a wonderful way to celebrate the ‘Stones No Filter’ tour arriving in Pasadena. This is definitely a milestone in our long and eventful history. A huge thank you to everyone at NASA for making it happen.”

A little larger than a golf ball, the rock appeared to have rolled about 3 feet (1 meter) on Nov. 26, 2018, propelled by InSight’s thrusters as the spacecraft touched down on Mars to study the Red Planet’s deep interior. In images taken by InSight the next day, several divots in the orange-red soil can be seen trailing Rolling Stones Rock. It’s the farthest NASA has seen a rock roll while landing a spacecraft on another planet.

August 22nd, 2019

One could fly to Mars in this spacious habitat and not go crazy

There are three stories inside the module. – Sierra Nevada Corporation

On Wednesday, Sierra Nevada Corporation—the company that makes aerospace equipment, not beer—showed off its proposed in-space habitat for the first time. The inflatable habitat is, first and foremost, large. It measures more than 8 meters long, and with a diameter of 8 meters has an internal volume of 300 cubic meters, which is about one-third the size of the International Space Station.

Sierra Nevada developed this full-scale prototype under a NASA program that funded several companies to develop habitats that could be used for a space station in orbit around the Moon, as well as potentially serving as living quarters for a long-duration transit to and from Mars. As part of the program, NASA astronauts have, or will, spend three days living in and evaluating the prototypes built by Sierra Nevada, Boeing, Lockheed Martin, Northrop Grumman, and Bigelow Aerospace.

The selling point for Sierra Nevada’s habitat is its size, which is possible because the multi-layered fabric material can be compressed for launch, then expanded and outfitted as a habitat once in space. It can fit within a standard payload fairing used for launch vehicles such as SpaceX’s Falcon Heavy rocket, United Launch Alliance’s Vulcan booster, or NASA’s Space Launch System. It is light enough for any of those rockets to launch to the Moon.

August 14th, 2019

Nuclear Reactor for Mars Outpost Could Be Ready to Fly by 2022

NASA and NNSA engineers lower the wall of the vacuum chamber around the Kilowatt Reactor Using Stirling TechnologY (KRUSTY system). The vacuum chamber is later evacuated to simulate the conditions of space when KRUSTY operates.
Credits: Los Alamos National Laboratory

A new type of nuclear reactor designed to power crewed outposts on the moon and Mars could be ready for its first in-space trial just a few years from now, project team members said.

A flight test is the next big step for the Kilopower experimental fission reactor, which aced a series of critical ground tests from November 2017 through March 2018. No off-Earth demonstration is on the books yet, but Kilopower should be ready to go by 2022 or so if need be, said Patrick McClure, Kilopower project lead at the Department of Energy’s (DOE) Los Alamos National Laboratory in New Mexico.

“I think we could do this in three years and be ready for flight,” McClure said late last month during a presentation with NASA’s Future In-Space Operations working group.

“I think three years is a very doable time frame,” he added, stressing that this is his opinion, not necessarily that of NASA, which is developing the Kilopower project along with the DOE.