MarsNews.com
October 18th, 2016

MAVEN Gives Unprecedented Ultraviolet View of Mars

New global images of Mars from the MAVEN mission show the ultraviolet glow from the Martian atmosphere in unprecedented detail, revealing dynamic, previously invisible behavior. They include the first images of “nightglow” that can be used to show how winds circulate at high altitudes. Additionally, dayside ultraviolet imagery from the spacecraft shows how ozone amounts change over the seasons and how afternoon clouds form over giant Martian volcanoes. The images were taken by the MAVEN Imaging UltraViolet Spectrograph (IUVS).

“MAVEN obtained hundreds of such images in recent months, giving some of the best high-resolution ultraviolet coverage of Mars ever obtained,” said Nick Schneider of the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder. Schneider is presenting these results Oct. 19 at the American Astronomical Society Division for Planetary Sciences meeting in Pasadena, California.

October 4th, 2016

NASA’S MAVEN Spacecraft Celebrates One Mars Year of Science NASA

MAVEN’s Imaging UltraViolet Spectrograph obtained this image of Mars on July 13, 2016, when the planet appeared nearly full when viewed from the highest altitudes in the MAVEN orbit. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. The ultraviolet (UV) view gives several new perspectives on Mars. Valles Marineris, a two-thousand-mile canyon system, appears prominently across the middle of the image as a blue gash. The deep canyon appears blue due to the scattering of ultraviolet light by the atmosphere, so strong that we cannot make out the bottom of the canyon. The greenish cast of the planet as a whole is a combination of the reflection of the surface plus the atmospheric scattering. The three tall Tharsis volcanoes appear near the left edge, dotted by white clouds forming as the winds flow over them. Bright white polar caps appear at both poles, typical for this season, in which there is a transition from southern-hemisphere winter to summer. The magenta-colored region visible at the south pole shows where ozone is absorbing ultraviolet light — the same property of ozone that protects life on Earth from harmful UV radiation. While ozone tends to be destroyed by chemical processes in the winter on Earth, different atmospheric chemistry at Mars caused it to build up in the winter there. A hint of ozone is also visible near the north pole; more will accumulate there as winter is coming. IUVS obtains images of Mars every orbit when the sunlit portion of the planet is visible from high altitude.
Credits: NASA/Goddard/University of Colorado/LASP

Today, NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) mission completed one Mars year of science observations. One Mars year is just under two Earth years.

MAVEN launched on Nov. 18, 2013, and went into orbit around Mars on Sept. 21, 2014. During its time at Mars, MAVEN has answered many questions about the Red Planet.

March 10th, 2016

Close comet flyby threw Mars’ magnetic field into chaos NASA

The close encounter between comet Siding Spring and Mars flooded the planet with an invisible tide of charged particles from the comet’s coma. The dense inner coma reached the surface of the planet, or nearly so. The comet’s powerful magnetic field temporarily merged with, and overwhelmed, the planet’s weak field, as shown in this artist’s depiction. Illustration credits: NASA/Goddard.

Just weeks before the historic encounter of comet C/2013 A1 (Siding Spring) with Mars in October 2014, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft entered orbit around the Red Planet. To protect sensitive equipment aboard MAVEN from possible harm, some instruments were turned off during the flyby; the same was done for other Mars orbiters. But a few instruments, including MAVEN’s magnetometer, remained on, conducting observations from a front-row seat during the comet’s remarkably close flyby.
The one-of-a-kind opportunity gave scientists an intimate view of the havoc that the comet’s passing wreaked on the magnetic environment, or magnetosphere, around Mars. The effect was temporary but profound.

“Comet Siding Spring plunged the magnetic field around Mars into chaos,” said Jared Espley, a MAVEN science team member at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We think the encounter blew away part of Mars’ upper atmosphere, much like a strong solar storm would.”

March 2nd, 2016

MAVEN Observes Mars Moon Phobos in the Mid- and Far-Ultraviolet NASA

Phobos as observed by MAVEN’s Imaging Ultraviolet Spectrograph. Orange shows mid-ultraviolet (MUV) sunlight reflected from the surface of Phobos, exposing the moon’s irregular shape and many craters. Blue shows far ultraviolet light detected at 121.6 nm, which is scattered off of hydrogen gas in the extended upper atmosphere of Mars. Phobos, observed here at a range of 300km, blocks this light, eclipsing the ultraviolet sky.
Credits: CU/LASP and NASA

NASA scientists are closer to solving the mystery of how Mars’ moon Phobos formed.

In late November and early December 2015, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission made a series of close approaches to the Martian moon Phobos, collecting data from within 300 miles (500 kilometers) of the moon.

Among the data returned were spectral images of Phobos in the ultraviolet. The images will allow MAVEN scientists to better assess the composition of this enigmatic object, whose origin is unknown.

November 5th, 2015

NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere NASA

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

“Mars appears to have had a thick atmosphere warm enough to support liquid water which is a key ingredient and medium for life as we currently know it,” said John Grunsfeld, astronaut and associate administrator for the NASA Science Mission Directorate in Washington. “Understanding what happened to the Mars atmosphere will inform our knowledge of the dynamics and evolution of any planetary atmosphere. Learning what can cause changes to a planet’s environment from one that could host microbes at the surface to one that doesn’t is important to know, and is a key question that is being addressed in NASA’s journey to Mars.”

October 16th, 2015

Comet’s Close Encounter with Mars Dumped Tons of Dust on Red Planet NASA

Sebastian Voltmer in Germany used the iTelescope at Siding Spring Observatory, Coonabarabran, New South Wales, Australia to capture Comet C/2013 A1 passing very close to Mars on 19 October 2014. He used their Takahashi FSQ ED refractor and SBIG STL11000M camera for four 120-seconds exposures; RGB 120-seconds (Bin 2). Image credit: © Sebastian Voltmer.

 

Comet Siding Spring’s close shave by Mars last year provided a rare glimpse into how Oort Cloud comets behave, according to new research.

The comet flew by Mars at a range of just 83,900 miles (135,000 kilometers) — close enough for the outer ridges of its tenuous atmosphere to pummel the planet with gas and dust.

In just a short flyby, the comet dumped about 2,200 to 4,410 lbs. (1,000 to 2,000 kg) of dust made of magnesium, silicon, calcium and potassium — all of which are rock-forming elements — into the upper atmosphere, the new study found.

June 3rd, 2015

Mars Missions to Pause Commanding in June, Due to Sun NASA

In June 2015, Mars will swing almost directly behind the sun from Earth’s perspective, and this celestial geometry will lead to diminished communications with spacecraft at Mars.

The arrangement of the sun between Earth and Mars is called Mars solar conjunction. It occurs about every 26 months as the two planets travel in their sun-centered orbits. The sun disrupts radio communications between the planets during the conjunction period. To prevent spacecraft at Mars from receiving garbled commands that could be misinterpreted or even harmful, the operators of Mars orbiters and rovers temporarily stop sending any commands.

May 28th, 2015

Blue Aurorae in Mars’ Sky Visible to the Naked Eye NASA

For the first time, an international team of scientists from NASA, the Institute of Planetology and Astrophysics of Grenoble (IPAG), the European Space Agency and Aalto University in Finland, have predicted that colorful, glowing aurorae can be seen by the naked eye on a terrestrial planet other than Earth — Mars.

Visible Martian aurorae seemed possible after the SPICAM imaging instrument on-board the ESA satellite Mars Express spotted aurorae from space in 2005. Those observations were confirmed in March 2015 by the NASA-led MAVEN mission, which completed 1,000 orbits around the red planet on April 6, 2015.

Through laboratory experiments and a physical numerical model developed at NASA and IPAG, the study shows that, on Mars, aurorae also occur in the visible range. The most intense color is deep blue. As on Earth, green and red colors are also present. Several times during a solar cycle, after intense solar eruptions, these lights are bright enough to be seen with the naked eye.

May 4th, 2015

Traffic Around Mars Gets Busy NASA

NASA has beefed up a process of traffic monitoring, communication and maneuver planning to ensure that Mars orbiters do not approach each other too closely.

Last year’s addition of two new spacecraft orbiting Mars brought the census of active Mars orbiters to five, the most ever. NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) and India’s Mars Orbiter Mission joined the 2003 Mars Express from ESA (the European Space Agency) and two from NASA: the 2001 Mars Odyssey and the 2006 Mars Reconnaissance Orbiter (MRO). The newly enhanced collision-avoidance process also tracks the approximate location of NASA’s Mars Global Surveyor, a 1997 orbiter that is no longer working.

It’s not just the total number that matters, but also the types of orbits missions use for achieving their science goals. MAVEN, which reached Mars on Sept. 21, 2014, studies the upper atmosphere. It flies an elongated orbit, sometimes farther from Mars than NASA’s other orbiters and sometimes closer to Mars, so it crosses altitudes occupied by those orbiters. For safety, NASA also monitors positions of ESA’s and India’s orbiters, which both fly elongated orbits

April 8th, 2015

MAVEN Completes 1,000 Orbits around Mars NASA

MAVEN completed 1,000 orbits around the Red Planet on April 6, four-and-a-half months into its one-year primary mission.

MAVEN is in its science mapping orbit and has been taking data since the start of its primary mission on Nov. 16, 2014. The furthest point in the spacecraft’s elliptical orbit has been 6,500 kilometers (4,039 miles) and the closest 130 kilometers (81 miles) above the Martian surface.

“The spacecraft and instruments continue to work well, and we’re building up a picture of the structure and composition of the upper atmosphere, of the processes that control its behavior, and of how loss of gas to space occurs,” said Bruce Jakosky, MAVEN’s principal investigator from the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

MAVEN was launched to Mars on Nov. 18, 2013, from Cape Canaveral Air Force Station in Florida. The spacecraft successfully entered Mars’ orbit on Sept. 21, 2014.