MarsNews.com
August 27th, 2019

Mars Missions Stop in Their Tracks as Red Planet Drifts to the Far Side of Sun

This animation illustrates Mars solar conjunction, a period when Mars is on the opposite side of the Sun from Earth. During this time, the Sun can interrupt radio transmissions to spacecraft on and around the Red Planet. Credit: NASA/JPL-Caltech

All of NASA’s spacecraft on Mars are about to find themselves on their own, running simplified routines and cut off from their masters on Earth. That’s because something big is about to come between the two planets — an electromagnetic energy source that’s too powerful to broadcast through or around: the sun.

During this period, known as the Mars solar conjunction, our home star and its corona pass between Earth and the Red Planet. Some radio signals might still get through, according to a statement from NASA’s Jet Propulsion Laboratory (JPL), but they aren’t reliable. Fortunately for all those distant robots, NASA knows this happens every couple years, and the machines are well prepared for the coming quiet period.

“Our engineers have been preparing our spacecraft for conjunction for months,” Roy Gladden, manager of the Mars Relay Network, said in the statement. “They’ll still be collecting science data at Mars, and some will attempt to send that data home. But we won’t be commanding the spacecraft out of concern that they could act on a corrupted command.”

August 23rd, 2019

NASA-JPL Names ‘Rolling Stones Rock’ on Mars

This animation illustrates NASA’s InSight lander touching down on Mars, its thrusters setting a rock in motion. A little bigger than a golf ball, the rock was later nicknamed “Rolling Stones Rock” by the InSight team in honor of The Rolling Stones. Credit: NASA/JPL-Caltech

For decades, the music of The Rolling Stones has had a global reach here on Earth. Now, the band’s influence extends all the way to Mars. The team behind NASA’s InSight lander has named a Martian rock after the band: ‘Rolling Stones Rock.’

The Rolling Stones – Mick Jagger, Keith Richards, Charlie Watts and Ronnie Wood – were delighted with the news and commented, “What a wonderful way to celebrate the ‘Stones No Filter’ tour arriving in Pasadena. This is definitely a milestone in our long and eventful history. A huge thank you to everyone at NASA for making it happen.”

A little larger than a golf ball, the rock appeared to have rolled about 3 feet (1 meter) on Nov. 26, 2018, propelled by InSight’s thrusters as the spacecraft touched down on Mars to study the Red Planet’s deep interior. In images taken by InSight the next day, several divots in the orange-red soil can be seen trailing Rolling Stones Rock. It’s the farthest NASA has seen a rock roll while landing a spacecraft on another planet.

August 8th, 2019

Holey Moley: Fixing The Mars Insight Mole

In the early 1990s, NASA experienced a sea change in the way it approached space exploration. Gone were the days when all their programs would be massive projects with audacious goals. The bulk of NASA’s projects would fall under the Discovery Project and hew to the mantra “faster, better, cheaper,” with narrowly focused goals and smaller budgets, with as much reuse of equipment as possible.

The idea for what would become the Mars InSight mission first appeared in 2010 and was designed to explore Mars in ways no prior mission had. Where Viking had scratched the surface in the 1970s looking for chemical signs of life and the rovers of the Explorer program had wandered about exploring surface geology, InSight was tasked with looking much, much deeper into the Red Planet.

Sadly, InSight’s primary means of looking at what lies beneath the regolith of Mars is currently stuck a few centimeters below the surface. NASA and JPL engineers are working on a fix, and while it’s far from certain that that they’ll succeed, things have started to look up for InSight lately. Here’s a quick look at what the problem is, and a potential solution that might get the mission back on track.

July 24th, 2019

Hypnotic animation reveals how seismic waves travel across Mars, months after NASA’s InSight lander recorded quakes on the red planet for the first time

Scientists have simulated the path of seismic waves rippling across the red planet. The ways in which quakes look and feel differ depending on the materials they’re traversing, meaning they may act very differently than what we’re used to here on Earth, the space agency explains

Scientists have simulated the path of seismic waves rippling across the red planet.

NASA’s InSight lander detected its first marsquake earlier this year, providing on-the-ground data for the first time on the behaviors of these natural phenomena on Mars.

The ways in which quakes look and feel differ depending on the materials they’re traversing, meaning they may act very differently than what we’re used to here on Earth, the space agency explains.

A new animation shows just how this might play out beneath the surface of Mars.

April 24th, 2019

NASA’s InSight Lander Captures Audio of First Likely ‘Quake’ on Mars

NASA’s Mars InSight lander has measured and recorded for the first time ever a likely “marsquake.”

The faint seismic signal, detected by the lander’s Seismic Experiment for Interior Structure (SEIS) instrument, was recorded on April 6, the lander’s 128th Martian day, or sol. This is the first recorded trembling that appears to have come from inside the planet, as opposed to being caused by forces above the surface, such as wind. Scientists still are examining the data to determine the exact cause of the signal.

“InSight’s first readings carry on the science that began with NASA’s Apollo missions,” said InSight Principal Investigator Bruce Banerdt of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “We’ve been collecting background noise up until now, but this first event officially kicks off a new field: Martian seismology!”

The new seismic event was too small to provide solid data on the Martian interior, which is one of InSight’s main objectives. The Martian surface is extremely quiet, allowing SEIS, InSight’s specially designed seismometer, to pick up faint rumbles. In contrast, Earth’s surface is quivering constantly from seismic noise created by oceans and weather. An event of this size in Southern California would be lost among dozens of tiny crackles that occur every day.

“The Martian Sol 128 event is exciting because its size and longer duration fit the profile of moonquakes detected on the lunar surface during the Apollo missions,” said Lori Glaze, Planetary Science Division director at NASA Headquarters.

March 19th, 2019

Minitremors detected on Mars for first time

NASA’s InSight lander places a protective, dome-shaped shield above its seismometer. JPL-CALTECH/NASA

After months of delicate maneuvering, NASA’s InSight lander has finished placing its hypersensitive seismometer on the surface of Mars. The instrument is designed to solve mysteries about the planet’s interior by detecting the booming thunder of “marsquakes.” But just a few weeks into its run, the car-size lander has already heard something else: the minute tremors that continually rock our red neighbor. If marsquakes are the drum solo, these microseisms, as they’re known, are the bass line.

The signal first became apparent in early February, as soon as the lander placed a protective shield over the seismometer, said Philippe Lognonné, a planetary seismologist at Paris Diderot University who heads the team that runs the instrument, in a talk here today at the annual Lunar and Planetary Science Conference. “We do believe that these signals are waves coming from Mars.” This is the first time, he said, that such microseisms have been detected on another planet.

On Earth, microseisms are ubiquitous, caused largely by the sloshing of the ocean by storms and tides. Mars, despite the dreams of science fiction writers, has no present-day oceans. Instead, this newly discovered noise is likely caused by low-frequency pressure waves from atmospheric winds that rattle the surface, inducing shallow, longer-period waves in the surface, called Rayleigh waves, Lognonné said.

March 5th, 2019

Mars InSight’s Rock-Hammer is About Half a Meter Down and Has Already Run into Rocks

NASA’s InSight lander is busy deploying its Heat Flow and Physical Properties Package (HP3) into the Martian soil and has encountered some resistance. The German Aerospace Center (DLR), who designed and built the HP3 as part of the InSight mission, has announced that the instrument has hit not one, but two rocks in the sub-surface. For now the HP3 is in a resting phase, and it’s not clear what will happen next.

The HP3 is designed to measure the heat coming from Mars’ interior and to tell us something about the source of that heat. The basic idea is to determine how Mars formed, and if it formed the same way Earth did. It’ll also tell us something about how rocky planets in general form and evolve. But to do that, it has to get underground.

The HP3 uses a hammer system to pound itself into the ground. It works in phases, spending about four hours at a time hammering into the surface. But all that hammering creates a lot of friction and heat, so the HP3 rests for a couple days while things cool down. Then it measures the heat before continuing the cycle.

February 22nd, 2019

With the best air pressure sensor ever on Mars, scientists find a mystery

Martian hourly weather data for Saturday, Sunday, and Monday. Note the kinks in the air pressure curve at 07:00 and 19:00 daily.

There’s a new meteorologist on Mars. Although NASA’s InSight spacecraft landed on the red planet late in 2018 to measure the planet’s geology—primarily by listening for Mars quakes—it also brought some sophisticated meteorology equipment with it.

The space agency has set up a website to share that information, which includes not only daily high and low temperatures but also unprecedented hourly data on wind speed, direction, and air pressure for InSight’s location near the equator in Elysium Planitia. “We thought it was something that people might have some fun with,” Cornell University’s Don Banfield, who leads InSight’s weather science, told Ars.

Other spacecraft have brought comparable temperature and wind sensors to Mars before, but none have carried such a precise air pressure sensor. The new sensor is 10 times more sensitive than any previous instrument because InSight needs to detect slight movements in the Martian ground, and from such movements infer details about the red planet’s interior. For this, weather matters.

The Martian atmosphere may be very thin—typically it varies between 700 and 740 pascals at the surface, less than one percent of Earth’s surface pressure—but it nonetheless can induce slight tilts in the Martian surface. The air pressure sensor will therefore help scientists calibrate the lander’s seismometer so that any tilting due to higher or lower air pressure can be filtered out of the data. It’s actually pretty amazing that even so thin an atmosphere can have a slight effect on the Martian surface and that InSight’s seismometer is sensitive enough to detect it.

February 8th, 2019

NASA’s first interplanetary CubeSats fall silent beyond Mars

After a successful mission that pushed the limits of small satellite technology, ground controllers have lost contact with two briefcase-sized CubeSats beyond Mars, NASA said Tuesday.

The pioneering Mars Cube One, or MarCO, mission set records for the farthest distance CubeSats have ever operated, accompanying NASA’s InSight lander to Mars after a May 5 launch atop an Atlas 5 rocket from Vandenberg Air Force Base, California.

The twin MarCO spacecraft relayed telemetry from InSight as it entered the Martian atmosphere Nov. 26 and successfully landed on the Red Planet, giving engineers at NASA’s Jet Propulsion Laboratory in California updates on the lander’s progress. albeit with an eight-minute delay due to the time it took radio signals to travel the 91 million miles (146 million kilometers) from Mars to Earth.

InSight could have succeeded without MarCO, but engineers would have had to wait hours to receive confirmation of the landing.

But MarCO was conceived primarily as an experimental mission to prove that CubeSats, with some modifications, could withstand the perils of deep space travel. CubeSats are much less expensive than larger satellites, and can cost less than $1 million to design and build for missions in Earth orbit.

The Mars Cube One mission cost $18.5 million, once engineers at JPL outfitted the satellites with a new type of radio, innovative antennas, a cold gas propulsion system, and other custom features needed for interplanetary spaceflight.

That’s still a fraction of the InSight mission’s $993 million cost.

February 6th, 2019

Motors on Mars: The technology being sent to explore Mars

Artist’s impression of the Mars helicopter

The US space agency, NASA, has announced that its Jet Propulsion Laboratory (JPL) will be sending a helicopter to the Red Planet on the upcoming Mars 2020 rover mission. It will land on Mars while attached to the bottom of the rover in February 2021. During the first 30 days of the mission, it will undertake several autonomous flights, each lasting up to 90 seconds to send the first aerial images (not taken by a satellite) of Mars back to Earth.

For the small helicopter to fly, it takes an enormous engineering effort. The thin air on Mars is comparable to conditions on Earth at an altitude of 30km. Also, taking the reduced Martian gravity into account, the helicopter needs to be very light (1.8kg) and can only carry small batteries.

The components used therefore must be extremely energy-efficient. Six of maxon motors’ 10mm diameter DCX precision micro motors, which have been used in previous Mars missions, will be used to move the swashplate, adjusting the inclination of the rotor blades, to control the vehicle.

The propulsion system is designed and built by AeroVironment, working closely with maxon engineers, under contract from JPL.

“Being part of another Mars pioneering project makes us incredibly proud,” says Eugen Elmiger, CEO of maxon motor.