December 7th, 2018

NASA InSight Lander ‘Hears’ Martian Winds

One of InSight’s 7-foot (2.2 meter) wide solar panels was imaged by the lander’s Instrument Deployment Camera, which is fixed to the elbow of its robotic arm.
Credits: NASA/JPL-Caltech

NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander, which touched down on Mars just 10 days ago, has provided the first ever “sounds” of Martian winds on the Red Planet. A media teleconference about these sounds will be held today at 12:30 p.m. EST (9:30 a.m. PST).

InSight sensors captured a haunting low rumble caused by vibrations from the wind, estimated to be blowing between 10 to 15 mph (5 to 7 meters a second) on Dec. 1, from northwest to southeast. The winds were consistent with the direction of dust devil streaks in the landing area, which were observed from orbit.

“Capturing this audio was an unplanned treat,” said Bruce Banerdt, InSight principal investigator at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “But one of the things our mission is dedicated to is measuring motion on Mars, and naturally that includes motion caused by sound waves.”

December 4th, 2018

NASA InSight Lander’s New Home on Mars ‘a Large Sandbox’

NASA’s InSight spacecraft flipped open the lens cover on its Instrument Context Camera (ICC) on Nov. 30, 2018, and captured this view of Mars. Located below the deck of the InSight lander, the ICC has a fisheye view, creating a curved horizon. Some clumps of dust are still visible on the camera’s lens. One of the spacecraft’s footpads can be seen in the lower right corner. The seismometer’s tether box is in the upper left corner. Image credit: NASA/JPL-Caltech

With InSight safely on the surface of Mars, the mission team at NASA’s Jet Propulsion Laboratory in Pasadena, California, is busy learning more about the spacecraft’s landing site. They knew when InSight landed on Nov. 26 that the spacecraft had touched down on target, a lava plain named Elysium Planitia. Now they’ve determined that the vehicle sits slightly tilted (about 4 degrees) in a shallow dust- and sand-filled impact crater known as a “hollow.” InSight has been engineered to operate on a surface with an inclination up to 15 degrees.

“The science team had been hoping to land in a sandy area with few rocks since we chose the landing site, so we couldn’t be happier,” said InSight project manager Tom Hoffman of JPL. “There are no landing pads or runways on Mars, so coming down in an area that is basically a large sandbox without any large rocks should make instrument deployment easier and provide a great place for our mole to start burrowing.”

Rockiness and slope grade factor into landing safety and are also important in determining whether InSight can succeed in its mission after landing. Rocks and slopes could affect InSight’s ability to place its heat-flow probe – also known as “the mole,” or HP3 – and ultra-sensitive seismometer, known as SEIS, on the surface of Mars.

December 3rd, 2018

Five planned missions to Mars

An artist’s impression of SpaceX’s Starship and Super Heavy Rocket. Photograph: AFP/Getty Images

Space agencies around the world are set to explore the red planet, while Elon Musk has even grander plans.

November 30th, 2018

Bothell company’s explosives made sure Mars craft had a soft landing

In this February 2015 photo made available by NASA, the parachute for the InSight mission to Mars is tested inside the world’s largest wind tunnel at NASA Ames Research Center in Mountain View, California. (NASA/JPL-Caltech/Lockheed Martin via AP)

Redmond-based rocket maker Aerojet-Rocketdyne wasn’t the only [Washington State] firm anxiously watching the NASA Mars landing on Monday.

In nearby Bothell, a team at the General Dynamics Ordnance and Tactical Systems operation sat in front of a live video feed from NASA’s Mission Control, waiting for news about their own piece of the mission — a small but powerful cannon designed to blast out the parachute that helped slow the InSight landing craft as it plunged through the Martian atmosphere.

The so-called Mortar Deployment System is a wastebasket-sized cylindrical device, roughly 18 inches long and 10 inches across, that uses a precisely calibrated explosion to rapidly inflate a huge parachute behind the lander. That high-caliber shove is needed because the Martian atmosphere, at only one-hundredth the density of Earth’s, is so thin that the parachute won’t unfold on its own, said Paul Lichon, director of General Dynamic’s Bothell operation.

And unless the chute deploys fully and precisely on time, Lichon said, the lander’s braking rockets — supplied by Aerojet-Rocketdyne — wouldn’t slow the lander sufficiently to avoid a crash landing.

“This is one of the few systems on the spacecraft that is ‘single-point failure,’” said Lichon. “If our system doesn’t work, the whole mission is lost.”

November 29th, 2018

Opinion: Mars Beckons

Niv Bavarsky

The science and technology behind NASA’s latest space explorer to land on Mars are so awe-inducing that it’s hardly surprising when scientists commenting on the triumph drop their usual jargon to speak like excited schoolchildren.

“It’s nice and dirty; I like that,” was how Bruce Banerdt, the principal investigator behind the InSight mission, reacted when, shortly after setting down Monday on the flat and featureless Martian plain known as the Elysium Planitia, the lander beamed back an image speckled with red dust. “This image is actually a really good argument for why you put a dust cover on a camera. Good choice, right?”

Unlike the [rovers], InSight — Interior Exploration using Seismic Investigations, Geodesy and Heat Transport — is meant to stay in one spot and deploy instruments to measure marsquakes (yes, on Earth they’re “earthquakes”) in order to learn about what’s going on in the innards of the planet. One gizmo will take Mars’s temperature by hammering itself 16 feet below the surface. Deploying the instruments alone is expected to take two months, and the entire mission is meant to last a Martian year, roughly two Earth years.

What for? A random sampling of comments from the public suggests not everyone is convinced that digging on Mars is money well spent. But the basic answer is that whether it’s practical or not, humans will continue to explore the heavens so long as the moon, Mars and the myriad celestial bodies beyond fire our imagination and curiosity. What happened in the earliest days of the universe? How were Earth and its fellow planets formed? And the question of questions: Is there life out there?

November 27th, 2018

InSight Is Catching Rays on Mars

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA’s InSight lander, took this picture of the Martian surface on Nov. 26, 2018, the same day the spacecraft touched down on the Red Planet. The camera’s transparent dust cover is still on in this image, to prevent particulates kicked up during landing from settling on the camera’s lens. This image was relayed from InSight to Earth via NASA’s Odyssey spacecraft, currently orbiting Mars. Image Credit: NASA/JPL-Caltech.

NASA’s InSight has sent signals to Earth indicating that its solar panels are open and collecting sunlight on the Martian surface. NASA’s Mars Odyssey orbiter relayed the signals, which were received on Earth at about 5:30 p.m. PST (8:30 p.m. EST). Solar array deployment ensures the spacecraft can recharge its batteries each day. Odyssey also relayed a pair of images showing InSight’s landing site.

“The InSight team can rest a little easier tonight now that we know the spacecraft solar arrays are deployed and recharging the batteries,” said Tom Hoffman, InSight’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California, which leads the mission. “It’s been a long day for the team. But tomorrow begins an exciting new chapter for InSight: surface operations and the beginning of the instrument deployment phase.”

InSight’s twin solar arrays are each 7 feet (2.2 meters) wide; when they’re open, the entire lander is about the size of a big 1960s convertible. Mars has weaker sunlight than Earth because it’s much farther away from the Sun. But the lander doesn’t need much to operate: The panels provide 600 to 700 watts on a clear day, enough to power a household blender and plenty to keep its instruments conducting science on the Red Planet. Even when dust covers the panels — what is likely to be a common occurrence on Mars — they should be able to provide at least 200 to 300 watts.

November 26th, 2018

Landing Day for InSight

In mere hours, NASA’s InSight spacecraft will complete its seven-month journey to Mars. It will have cruised 301,223,981 miles (484,773,006 km) at a top speed of 6,200 mph (10,000 kph).
Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, which leads the mission, are preparing for the spacecraft to enter the Martian atmosphere, descend with a parachute and retrorockets, and touch down tomorrow at around noon PST (3 p.m. EST). InSight — which stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport — will be the first mission to study the deep interior of Mars.

“We’ve studied Mars from orbit and from the surface since 1965, learning about its weather, atmosphere, geology and surface chemistry,” said Lori Glaze, acting director of the Planetary Science Division in NASA’s Science Mission Directorate. “Now we finally will explore inside Mars and deepen our understanding of our terrestrial neighbor as NASA prepares to send human explorers deeper into the solar system.”

Before InSight enters the Martian atmosphere, there are a few final preparations to make. At 1:47 p.m. PST (4:47 p.m. EST) engineers successfully conducted a last trajectory correction maneuver to steer the spacecraft within a few kilometers of its targeted entry point over Mars. Engineers still need to conduct a last trajectory correction maneuver to steer the spacecraft toward its entry point over Mars. About two hours before hitting the atmosphere, the entry, descent and landing (EDL) team might also upload some final tweaks to the algorithm that guides the spacecraft safely to the surface.

November 20th, 2018

Mars getting first US visitor in years, a 3-legged geologist

An artist’s rendition of the InSight lander operating on the surface of Mars. Image Credit: NASA/JPL-Caltech

Mars is about to get its first U.S. visitor in years: a three-legged, one-armed geologist to dig deep and listen for quakes.

ASA’s InSight makes its grand entrance through the rose-tinted Martian skies on Monday, after a six-month, 300 million-mile (480 million-kilometer) journey. It will be the first American spacecraft to land since the Curiosity rover in 2012 and the first dedicated to exploring underground.

NASA is going with a tried-and-true method to get this mechanical miner to the surface of the red planet. Engine firings will slow its final descent and the spacecraft will plop down on its rigid legs, mimicking the landings of earlier successful missions.

That’s where old school ends on this $1 billion U.S.-European effort .

Once flight controllers in California determine the coast is clear at the landing site—fairly flat and rock free—InSight’s 6-foot (1.8-meter) arm will remove the two main science experiments from the lander’s deck and place them directly on the Martian surface.

No spacecraft has attempted anything like that before.

The firsts don’t stop there.

One experiment will attempt to penetrate 16 feet (5 meters) into Mars, using a self-hammering nail with heat sensors to gauge the planet’s internal temperature. That would shatter the out-of-this-world depth record of 8 feet (2 ½ meters) drilled by the Apollo moonwalkers nearly a half-century ago for lunar heat measurements.

The astronauts also left behind instruments to measure moonquakes. InSight carries the first seismometers to monitor for marsquakes—if they exist. Yet another experiment will calculate Mars’ wobble, providing clues about the planet’s core.

November 14th, 2018

NASA Brings Mars Landing, First in Six Years, to Viewers Everywhere November 26, 2018

This illustration shows a simulated view of NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander firing retrorockets to slow down as it descends toward the surface of Mars.
Credits: NASA/JPL-Caltech

NASA’s Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander is scheduled to touch down on the Red Planet at approximately 3 p.m. EST Nov. 26, and viewers everywhere can watch coverage of the event live on NASA Television, the agency’s website and social media platforms.

Launched on May 5, InSight marks NASA’s first Mars landing since the Curiosity rover in 2012. The landing will kick off a two-year mission in which InSight will become the first spacecraft to study Mars’ deep interior. Its data also will help scientists understand the formation of all rocky worlds, including our own.

InSight is being followed to Mars by two mini-spacecraft comprising NASA’s Mars Cube One (MarCO), the first deep-space mission for CubeSats. If MarCO makes its planned Mars flyby, it will attempt to relay data from InSight as it enters the planet’s atmosphere and lands.

InSight and MarCO flight controllers will monitor the spacecraft’s entry, descent and landing from mission control at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, where all landing events will take place.

November 6th, 2018

The Mars InSight Landing Site Is Just Plain Perfect

This map shows the single area under continuing evaluation as the InSight mission’s Mars landing site, as of a year before the mission’s May 2016 launch. The finalist ellipse marked is within the northern portion of flat-lying Elysium Planitia about four degrees north of Mars’ equator. Image credit: NASA/JPL-Caltech/ASU.

“Picking a good landing site on Mars is a lot like picking a good home: It’s all about location, location, location,” said Tom Hoffman, InSight project manager at JPL. “And for the first time ever, the evaluation for a Mars landing site had to consider what lay below the surface of Mars. We needed not just a safe place to land, but also a workspace that’s penetrable by our 16-foot-long (5-meter) heat-flow probe.”

The site also needs to be bright enough and warm enough to power the solar cells while keeping its electronics within temperature limits for an entire Martian year (26 Earth months).

So the team focused on a band around the equator, where the lander’s solar array would have adequate sunlight to power its systems year-round. Finding an area that would be safe enough for InSight to land and then deploy its solar panels and instruments without obstructions took a little longer.

“The site has to be a low-enough elevation to have sufficient atmosphere above it for a safe landing, because the spacecraft will rely first on atmospheric friction with its heat shield and then on a parachute digging into Mars’ tenuous atmosphere for a large portion of its deceleration,” said Hoffman. “And after the chute has fallen away and the braking rockets have kicked in for final descent, there needs to be a flat expanse to land on – not too undulating and relatively free of rocks that could tip the tri-legged Mars lander.”

Of 22 sites considered, only Elysium Planitia, Isidis Planitia and Valles Marineris met the basic engineering constraints. To grade the three remaining contenders, reconnaissance images from NASA’s Mars orbiters were scoured and weather records searched. Eventually, Isidis Planitia and Valles Marineris were ruled out for being too rocky and windy.

That left the 81-mile long, 17-mile-wide (130-kilometer-long, 27-kilometer-wide) landing ellipse on the western edge of a flat, smooth expanse of lava plain.