MarsNews.com
February 2nd, 2022

Helicopters Flying at Mars May Glow at Dusk

This is an artist’s concept of a glow surrounding a drone at Mars during flight. The glow, exaggerated for visibility, might happen if the drone’s spinning rotor blades generate an electric field that causes electric currents to flow in the Martian air around the craft. Although the currents generated by the drone in the atmosphere are small, they might be large enough to cause the air around the blades and other parts of the craft to glow a blue-purple color.
Credits: NASA/Jay Friedlander

The whirling blades on drones flying above Mars may cause tiny electric currents to flow in the Martian atmosphere, according to a NASA study. These currents, if large enough, might cause the air surrounding the craft to glow. This process occurs naturally at much larger scales on Earth as a corona or electrical glow sometimes seen on aircraft and ships in electrical storms known as Saint Elmo’s Fire.

January 10th, 2022

Assessing Perseverance’s Seventh Sample Collection

Debris in Perseverance’s Bit Carousel: Pebble-sized debris can be seen in the bit carousel of NASA’s Perseverance Mars rover in this Jan. 7, 2022, image. Credits: NASA/JPL-Caltech/MSSS

On Wednesday, Dec. 29 (sol 306) Perseverance successfully cored and extracted a sample from a Mars rock. Data downlinked after the sampling indicates that coring of the rock the science team nicknamed Issole went smoothly. However, during the transfer of the bit that contains the sample into the rover’s bit carousel (which stores bits and passes tubes to the tube processing hardware inside the rover), our sensors indicated an anomaly. The rover did as it was designed to do – halting the caching procedure and calling home for further instructions.

This is only the 6th time in human history a sample has been cored from a rock on a planet other than Earth, so when we see something anomalous going on, we take it slow. Here is what we know so far, and what we are doing about it.

April 22nd, 2021

NASA’s Perseverance Rover Just Turned Martian CO2 Into Oxygen

Image by NASA

A toaster-sized scientific instrument attached to NASA’s Perseverance rover just sucked up a bit of carbon dioxide from the surrounding Martian atmosphere and converted it into oxygen.

It’s a groundbreaking first that could lead to a future in which space travelers are not only able to generate air to breathe, but rocket fuel to get them back to Earth as well — while still on Mars.

The instrument, called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), is a technology demonstration that could eventually be scaled up to produce enough propellant to enable a crew of astronauts to take off from the surface of the Red Planet.

“This is a critical first step at converting carbon dioxide to oxygen on Mars,” said Jim Reuter, associate administrator of NASA’s Space Technology Mission Directorate (STMD), in a statement. “MOXIE has more work to do, but the results from this technology demonstration are full of promise as we move toward our goal of one day seeing humans on Mars.”

April 19th, 2021

NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

NASA’s Ingenuity Mars Helicopter captured this shot as it hovered over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which autonomously tracks the ground during flight.
Credits: NASA/JPL-Caltech

Monday, NASA’s Ingenuity Mars Helicopter became the first aircraft in history to make a powered, controlled flight on another planet. The Ingenuity team at the agency’s Jet Propulsion Laboratory in Southern California confirmed the flight succeeded after receiving data from the helicopter via NASA’s Perseverance Mars rover at 6:46 a.m. EDT (3:46 a.m. PDT).

“Ingenuity is the latest in a long and storied tradition of NASA projects achieving a space exploration goal once thought impossible,” said acting NASA Administrator Steve Jurczyk. “The X-15 was a pathfinder for the space shuttle. Mars Pathfinder and its Sojourner rover did the same for three generations of Mars rovers. We don’t know exactly where Ingenuity will lead us, but today’s results indicate the sky – at least on Mars – may not be the limit.”

The solar-powered helicopter first became airborne at 3:34 a.m. EDT (12:34 a.m. PDT) – 12:33 Local Mean Solar Time (Mars time) – a time the Ingenuity team determined would have optimal energy and flight conditions. Altimeter data indicate Ingenuity climbed to its prescribed maximum altitude of 10 feet (3 meters) and maintained a stable hover for 30 seconds. It then descended, touching back down on the surface of Mars after logging a total of 39.1 seconds of flight. Additional details on the test are expected in upcoming downlinks.

Ingenuity’s initial flight demonstration was autonomous – piloted by onboard guidance, navigation, and control systems running algorithms developed by the team at JPL. Because data must be sent to and returned from the Red Planet over hundreds of millions of miles using orbiting satellites and NASA’s Deep Space Network, Ingenuity cannot be flown with a joystick, and its flight was not observable from Earth in real time.

March 29th, 2021

The Golden Box That Could Create Oxygen on Mars

MOXIE is already on the Red Planet. It’s now time to test it out.

Humanity’s future on Mars may depend on a golden box about the size of a car battery.

On February 18, NASA’s Perseverance rover landed on Mars with this box, called MOXIE, nestled in its belly.

MOXIE was designed to convert carbon dioxide into oxygen on Mars, and NASA plans to put it to the test within the next few months. If it works as hoped, the instrument could play a key role in getting astronauts home from Mars — and maybe even help them survive while on the Red Planet.

NASA can’t send people to Mars until it knows it can also bring them back, and that means making sure the astronauts have enough rocket propellant for the return trip.

The most straightforward option is to send the propellant — a combination of oxygen and rocket fuel — to Mars with the astronauts.

February 18th, 2021

NASA’s Perseverance Has Landed

An illustration of NASA’s Perseverance rover landing safely on Mars.

Cheers erupted in mission control at NASA’s Jet Propulsion Laboratory as controllers confirmed that NASA’s Perseverance rover, with the Ingenuity Mars Helicopter attached to its belly, has touched down safely on Mars. Engineers are analyzing the data flowing back from the spacecraft.

January 26th, 2021

NASA’s ‘Mars Helicopter’ Ingenuity will reach the Red Planet next month

Ingenuity and Perseverance should touch down on Mars February 18, 2021

Something to look forward to: NASA’s latest explorer rover is set to make contact with Mars’ surface next month, on February 18. It’s an important step for the space agency, and not just due to the rover itself: its cargo is equally important. The Perseverance rover is carrying the first-ever “Mars Helicopter,” aptly known as Ingenuity.

Ingenuity is a small, lightweight helicopter with two rotors, each made from durable carbon fiber. The rotors will spin in opposing directions, at speeds of “around 2,400 rpm,” which is “many times” faster than what you’d see on any passenger helicopter on Earth.

So, why are those speeds necessary, and why is Ingenuity so light? According to NASA, Mars’ extremely thin atmosphere is to blame. With much less usable air than Earth, any flying vehicle attempting to fly on the Red Planet would need considerably faster rotors to generate enough lift to get off the ground.

December 26th, 2020

NASA video shows Perseverance rover’s planned ‘terror’ landing on Mars

NASA has shown what it will look like when its Perseverance rover touches down on Mars, a challenging sequence that the agency describes as “7 minutes of terror.”

The Perseverance rover was launched in the summer and is scheduled to arrive on Mars in February [2021].

Once it reaches Mars’ atmosphere on its way to Jezero Crater, it must slow down from its speed of 12,000 mph in a span of 7 minutes, touch down on the rust-colored surface and disconnect from the main spacecraft.

Tuesday, NASA released an animation that showed the complex process.

The rover will carry state-of-the-art onboard cameras and microphones that will record the landing for NASA to study — if all goes well.

July 21st, 2020

How NASA Built a Self-Driving Car for Its Next Mars Mission

Like the self-driving cars on Earth, Perseverance will navigate using an array of sensors feeding data to machine vision algorithms.PHOTOGRAPH: NASA/JPL-CALTECH

Later this month, NASA is expected to launch its latest Mars rover, Perseverance, on a first-of-its-kind mission to the Red Planet. Its job is to collect and store geological samples so they can eventually be returned to Earth. Perseverance will spend its days poking the Jezero Crater, an ancient Martian river delta, and the samples it collects may contain the first evidence of extraterrestrial life. But first it has to find them. For that, it needs some damn good computers—at least by Martian standards.

Perseverance is significantly more autonomous than any of NASA’s previous four rovers and is designed to be what Philip Twu, a robotics system engineer at NASA’s Jet Propulsion Laboratory, calls a “self-driving car on Mars.” Like the ones on Earth, Perseverance will navigate using an array of sensors feeding data to machine vision algorithms. But whereas terrestrial autonomous vehicles are packed with the best computers money can buy, the main computer on Perseverance is about as fast as a high-end PC … from 1997. The only way Perseverance’s poky brain is able to handle all this autonomous driving is because NASA gave it a second computer that acts like a robotic driver.

July 13th, 2020

Mars missions: NASA, China and the UAE launch new spacecraft this month

We’re not sending astronauts to Mars yet, but July marks a significant month for launches to the red planet, aimed at seeking signs of life.
NASA/JPL-Caltech

With travel greatly restricted across the planet, you might feel a little jealous of the three robotic explorers scheduled to depart to Mars in the next month. From this week until mid-August, a bevy of spacecraft will depart Earth with a one-way ticket to the red planet, tasked with uncovering secrets about past life and the planet’s unusual atmosphere.

NASA will send the Perseverance rover, a next-gen wanderer that will explore an ancient lake bed, looking for evidence of alien life. The Chinese space agency is launching a triple threat: An orbiter, lander and rover are on a mission to make China just the third country to land on Mars. And then there’s Hope, the United Arab Emirates’ orbiter, set to study the Martian atmosphere like never before.

It might seem unusual so many Mars missions are launching in such a small amount of time, but I can assure you it’s not because the robots have achieved sentience and decided to flee the garbage fire that 2020 has become. It’s just physics.