MarsNews.com
March 24th, 2016

NASA gravity map offers closest ever look at Mars

By tracking the gravitational pull on spacecraft over Mars, NASA has created one of the most detailed maps yet of the Red Planet’s surface, and what lies beneath.

“Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient,” Antonio Genova of the Massachusetts Institute of Technology (MIT) said in a statement.
“The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet’s gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars.”
As well as providing insight for future missions, the gravity map also offers explanations for developments in the planet’s past.

March 16th, 2016

Ten Years of Discovery by Mars Reconnaissance Orbiter

True to its purpose, the big NASA spacecraft that began orbiting Mars a decade ago this week has delivered huge advances in knowledge about the Red Planet.

NASA’s Mars Reconnaissance Orbiter (MRO) has revealed in unprecedented detail a planet that held diverse wet environments billions of years ago and remains dynamic today.

One example of MRO’s major discoveries was published last year, about the possibility of liquid water being present seasonally on present-day Mars. It drew on three key capabilities researchers gained from this mission: telescopic camera resolution to find features narrower than a driveway; spacecraft longevity to track seasonal changes over several Martian years; and imaging spectroscopy to map surface composition.

Other discoveries have resulted from additional capabilities of the orbiter. These include identifying underground geologic structures, scanning atmospheric layers and observing the entire planet’s weather daily. All six of the orbiter’s science instruments remain productive in an extended mission more than seven years after completion of the mission’s originally planned primary science phase.

October 16th, 2015

Comet’s Close Encounter with Mars Dumped Tons of Dust on Red Planet

Sebastian Voltmer in Germany used the iTelescope at Siding Spring Observatory, Coonabarabran, New South Wales, Australia to capture Comet C/2013 A1 passing very close to Mars on 19 October 2014. He used their Takahashi FSQ ED refractor and SBIG STL11000M camera for four 120-seconds exposures; RGB 120-seconds (Bin 2). Image credit: © Sebastian Voltmer.

 

Comet Siding Spring’s close shave by Mars last year provided a rare glimpse into how Oort Cloud comets behave, according to new research.

The comet flew by Mars at a range of just 83,900 miles (135,000 kilometers) — close enough for the outer ridges of its tenuous atmosphere to pummel the planet with gas and dust.

In just a short flyby, the comet dumped about 2,200 to 4,410 lbs. (1,000 to 2,000 kg) of dust made of magnesium, silicon, calcium and potassium — all of which are rock-forming elements — into the upper atmosphere, the new study found.

October 8th, 2015

NASA’s Curiosity Rover Team Confirms Ancient Lakes on Mars

http://www.jpl.nasa.gov/spaceimages/images/largesize/PIA19839_hires.jpg

Strata at Base of Mount Sharp

A new study from the team behind NASA’s Mars Science Laboratory/Curiosity has confirmed that Mars was once, billions of years ago, capable of storing water in lakes over an extended period of time.

Using data from the Curiosity rover, the team has determined that, long ago, water helped deposit sediment into Gale Crater, where the rover landed more than three years ago. The sediment deposited as layers that formed the foundation for Mount Sharp, the mountain found in the middle of the crater today.

“Observations from the rover suggest that a series of long-lived streams and lakes existed at some point between about 3.8 to 3.3 billion years ago, delivering sediment that slowly built up the lower layers of Mount Sharp,” said Ashwin Vasavada, Mars Science Laboratory project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and co-author of the new Science article to be published Friday, Oct. 9.

September 28th, 2015

NASA Confirms Evidence That Liquid Water Flows on Today’s Mars NASA

9-28-2015 8-53-47 AM

mars-lineae-slopes-garni-crater-perspective6-PIA19917-br2

New findings from NASA’s Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars. Using an imaging spectrometer on MRO, researchers detected signatures of hydrated minerals on slopes where mysterious streaks are seen on the Red Planet. These darkish streaks appear to ebb and flow over time. They darken and appear to flow down steep slopes during warm seasons, and then fade in cooler seasons. They appear in several locations on Mars when temperatures are above minus 10 degrees Fahrenheit (minus 23 Celsius), and disappear at colder times.
“Our quest on Mars has been to ‘follow the water,’ in our search for life in the universe, and now we have convincing science that validates what we’ve long suspected,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington. “This is a significant development, as it appears to confirm that water — albeit briny — is flowing today on the surface of Mars.”

September 14th, 2015

Terraced Craters: Windows Into Mars’ Icy Past NASA

It was a “crazy-looking crater” on the face of Mars that caught Ali Bramson’s eye. But it was a simple calculation that explained the crater’s strange shape.

Combining data gleaned from two powerful instruments aboard NASA’s Mars Reconnaissance Orbiter, or MRO, Bramson and her colleagues determined why the crater is terraced — not bowl shaped, like most craters of this size.

“Craters should be bowl shaped, but this one had terraces in the wall,” says Bramson, a graduate student in the University of Arizona’s Lunar and Planetary Laboratory, or LPL.

Terraces can form when there are layers of different materials in the planet’s subsurface, such as dirt, ice or rock.

“When the crater is forming, the shock wave from an object hitting a planet’s surface propagates differently depending on what substrates are beneath the area of impact,” Bramson says. “If you have a weaker material in one layer, the shock wave can push out that material more easily, and the result is terracing at the interface between the weaker and stronger materials.”

August 20th, 2015

NASA to rely on Mars programme’s silent workhorse for years to come NASA

PIA07245_200609062-fi

NASA’s Mars Reconnaissance Orbiter, aging and arthritic a decade after its launch, remains productive and is expected to be the primary pipeline for high-resolution maps of Mars for scientists and mission planners over the next decade.

Scientists who want to study Mars’ enigmatic history, tenuous water cycle and climate will continue to rely on the nearly $900 million MRO mission, and engineers charged with selecting landing sites for future Mars rovers, and eventual human expeditions, will use maps created from the orbiter’s imagery, officials said.

And the success of future landers, beginning with NASA’s InSight seismic probe next year, depend in part on MRO’s availability to relay data from the Martian surface to Earth.

July 28th, 2015

NASA Mars Orbiter Preparing for Mars Lander’s 2016 Arrival NASA

With its biggest orbit maneuver since 2006, NASA’s Mars Reconnaissance Orbiter (MRO) will prepare this week for the arrival of NASA’s next Mars lander, InSight, next year.

A planned 77-second firing of six intermediate-size thrusters on July 29 will adjust the orbit timing of the veteran spacecraft so it will be in position to receive radio transmissions from InSight as the newcomer descends through the Martian atmosphere and touches down on Sept. 28, 2016. These six rocket engines, which were used for trajectory corrections during the spacecraft’s flight from Earth to Mars, can each produce about 22 newtons, or five pounds, of thrust.

“Without making this orbit change maneuver, Mars Reconnaissance Orbiter would be unable to hear from InSight during the landing, but this will put us in the right place at the right time,” said MRO Project Manager Dan Johnston of NASA’s Jet Propulsion Laboratory, Pasadena, California.

July 22nd, 2015

New Website Gathering Public Input on NASA Mars Images NASA

Science-team members for NASA’s Mars Reconnaissance Orbiter are soliciting help from the public to analyze exotic features near the south pole of Mars.

By categorizing features visible in images from the orbiter’s Context Camera (CTX), volunteers are using their own computers to help the team identify specific areas for even more detailed examination with the orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera. HiRISE can reveal more detail than any other camera ever put into orbit around Mars.

Information about how to participate is at the “Planet Four: Terrains” website, at:

http://www.planetfour.org

June 3rd, 2015

Mars Missions to Pause Commanding in June, Due to Sun NASA

In June 2015, Mars will swing almost directly behind the sun from Earth’s perspective, and this celestial geometry will lead to diminished communications with spacecraft at Mars.

The arrangement of the sun between Earth and Mars is called Mars solar conjunction. It occurs about every 26 months as the two planets travel in their sun-centered orbits. The sun disrupts radio communications between the planets during the conjunction period. To prevent spacecraft at Mars from receiving garbled commands that could be misinterpreted or even harmful, the operators of Mars orbiters and rovers temporarily stop sending any commands.