January 16th, 2019

Scientists Discover Clean Water Ice Just Below Mars’ Surface

Erosion on Mars has uncovered large, steep cross-sections of clean, subterranean ice. In this false color image captured by NASA’s HiRISE camera, one of eight recently discovered stripes appears dark blue against the Martian terrain.NASA/JPL/UNIVERSITY OF ARIZONA/USGS

Locked away beneath the surface of Mars are vast quantities of water ice. But the properties of that ice—how pure it is, how deep it goes, what shape it takes—remain a mystery to planetary geologists. Those things matter to mission planners, too: Future visitors to Mars, be they short-term sojourners or long-term settlers, will need to understand the planet’s subsurface ice reserves if they want to mine it for drinking, growing crops, or converting into hydrogen for fuel.

Trouble is, dirt, rocks, and other surface-level contaminants make it hard to study the stuff. Mars landers can dig or drill into the first few centimeters of the planet’s surface, and radar can give researchers a sense of what lies tens-of-meters below the surface. But the ice content of the geology in between—the first 20 meters or so—is largely uncharacterized.

Fortunately, land erodes. Forget radar and drilling robots: Locate a spot of land laid bare by time, and you have a direct line of sight on Mars’ subterranean layers—and any ice deposited there.

Now, scientists have discovered such a site. In fact, with the help of HiRISE, a powerful camera aboard NASA’s Mars Reconnaissance Orbiter, they’ve found several.

December 21st, 2018

Mars Express gets festive: A winter wonderland on Mars

Perspective view of Korolev crater. ESA/DLR/FU Berlin

This image shows what appears to be a large patch of fresh, untrodden snow – a dream for any lover of the holiday season. However, it’s a little too distant for a last-minute winter getaway: this feature, known as Korolev crater, is found on Mars, and is shown here in beautiful detail as seen by Mars Express.

ESA’s Mars Express mission launched on 2 June 2003, and reached Mars six months later. The satellite fired its main engine and entered orbit around the Red Planet on 25 December, making this month the 15-year anniversary of the spacecraft’s orbit insertion and the beginning of its science programme.

These images are an excellent celebration of such a milestone. Taken by the Mars Express High Resolution Stereo Camera (HRSC), this view of Korolev crater comprises five different ‘strips’ that have been combined to form a single image, with each strip gathered over a different orbit. The crater is also shown in perspective, context, and topographic views, all of which offer a more complete view of the terrain in and around the crater.

December 4th, 2018

NASA InSight Lander’s New Home on Mars ‘a Large Sandbox’

NASA’s InSight spacecraft flipped open the lens cover on its Instrument Context Camera (ICC) on Nov. 30, 2018, and captured this view of Mars. Located below the deck of the InSight lander, the ICC has a fisheye view, creating a curved horizon. Some clumps of dust are still visible on the camera’s lens. One of the spacecraft’s footpads can be seen in the lower right corner. The seismometer’s tether box is in the upper left corner. Image credit: NASA/JPL-Caltech

With InSight safely on the surface of Mars, the mission team at NASA’s Jet Propulsion Laboratory in Pasadena, California, is busy learning more about the spacecraft’s landing site. They knew when InSight landed on Nov. 26 that the spacecraft had touched down on target, a lava plain named Elysium Planitia. Now they’ve determined that the vehicle sits slightly tilted (about 4 degrees) in a shallow dust- and sand-filled impact crater known as a “hollow.” InSight has been engineered to operate on a surface with an inclination up to 15 degrees.

“The science team had been hoping to land in a sandy area with few rocks since we chose the landing site, so we couldn’t be happier,” said InSight project manager Tom Hoffman of JPL. “There are no landing pads or runways on Mars, so coming down in an area that is basically a large sandbox without any large rocks should make instrument deployment easier and provide a great place for our mole to start burrowing.”

Rockiness and slope grade factor into landing safety and are also important in determining whether InSight can succeed in its mission after landing. Rocks and slopes could affect InSight’s ability to place its heat-flow probe – also known as “the mole,” or HP3 – and ultra-sensitive seismometer, known as SEIS, on the surface of Mars.

November 29th, 2018

Opinion: Mars Beckons

Niv Bavarsky

The science and technology behind NASA’s latest space explorer to land on Mars are so awe-inducing that it’s hardly surprising when scientists commenting on the triumph drop their usual jargon to speak like excited schoolchildren.

“It’s nice and dirty; I like that,” was how Bruce Banerdt, the principal investigator behind the InSight mission, reacted when, shortly after setting down Monday on the flat and featureless Martian plain known as the Elysium Planitia, the lander beamed back an image speckled with red dust. “This image is actually a really good argument for why you put a dust cover on a camera. Good choice, right?”

Unlike the [rovers], InSight — Interior Exploration using Seismic Investigations, Geodesy and Heat Transport — is meant to stay in one spot and deploy instruments to measure marsquakes (yes, on Earth they’re “earthquakes”) in order to learn about what’s going on in the innards of the planet. One gizmo will take Mars’s temperature by hammering itself 16 feet below the surface. Deploying the instruments alone is expected to take two months, and the entire mission is meant to last a Martian year, roughly two Earth years.

What for? A random sampling of comments from the public suggests not everyone is convinced that digging on Mars is money well spent. But the basic answer is that whether it’s practical or not, humans will continue to explore the heavens so long as the moon, Mars and the myriad celestial bodies beyond fire our imagination and curiosity. What happened in the earliest days of the universe? How were Earth and its fellow planets formed? And the question of questions: Is there life out there?

November 21st, 2018

Mars moon got its grooves from rolling stones, study suggests

Groovy Phobos
Much of Phobos’ surface is covered with strange linear grooves. New research bolsters that idea the boulders blasted free from Stickney crater (the large depression on the right) carved those iconic grooves.
NASA/JPL-Caltech/University of Arizona

A new study bolsters the idea that strange grooves crisscrossing the surface of the Martian moon Phobos were made by rolling boulders blasted free from an ancient asteroid impact.

The research, published in Planetary and Space Science, uses computer models to simulate the movement of debris from Stickney crater, a huge gash on one end of Phobos’ oblong body. The models show that boulders rolling across the surface in the aftermath of the Stickney impact could have created the puzzling patterns of grooves seen on Phobos today.

“These grooves are a distinctive feature of Phobos, and how they formed has been debated by planetary scientists for 40 years,” said Ken Ramsley, a planetary science researcher at Brown University who led the work. “We think this study is another step toward zeroing in on an explanation.”

Phobos’ grooves, which are visible across most of the moon’s surface, were first glimpsed in the 1970s by NASA’s Mariner and Viking missions. Over the years, there has been no shortage of explanations put forward for how they formed. Some scientists have posited that large impacts on Mars have showered the nearby moon with groove-carving debris. Others think that Mars’ gravity is slowly tearing Phobos apart, and the grooves are signs of structural failure.

Still other researchers have made the case that there’s a connection between the grooves and the Stickney impact. In the late 1970s, planetary scientists Lionel Wilson and Jim Head proposed the idea that ejecta — bouncing, sliding and rolling boulders — from Stickney may have carved the grooves. Head, a professor in Brown’s department of Earth, Environmental and Planetary Sciences, was also a coauthor of this new paper.

October 26th, 2018

Electricity in Martian dust storms helps to form perchlorates

A Martian dust devil winding its way along the Amazonis Planitia region of northern Mars in March 2012. (Photo: NASA’s Mars Reconnaissance Orbiter)

The zip of electricity in Martian dust storms helps to form the huge amounts of perchlorate found in the planet’s soils, according to new research from Washington University in St. Louis.

It’s not lightning but another form of electrostatic discharge that packs the key punch in the planet-wide distribution of the reactive chemical, said Alian Wang, research professor in the Department of Earth and Planetary Sciences in Arts & Sciences.

“We found a new mechanism that can be stimulated by a type of atmospheric event that’s unique to Mars and that occurs frequently, lasts a very long time and covers large areas of the planet — that is, dust storms and dust devils,” Wang said. “It explains the unique, high concentration of an important chemical in Martian soils and that is highly significant in the search for life on Mars.”

The new work is an experimental study that simulates Martian conditions in a laboratory chamber on Earth.

October 25th, 2018

Mars Express keeps an eye on curious cloud

Elongated cloud on Mars – ESA

Since 13 September, ESA’s Mars Express has been observing the evolution of an elongated cloud formation hovering in the vicinity of the 20 km-high Arsia Mons volcano, close to the planet’s equator.

In spite of its location, this atmospheric feature is not linked to volcanic activity but is rather a water ice cloud driven by the influence of the volcano’s leeward slope on the air flow – something that scientists call an orographic or lee cloud – and a regular phenomenon in this region.

The cloud can be seen in this view taken on 10 October by the Visual Monitoring Camera (VMC) on Mars Express – which has imaged it hundreds of times over the past few weeks – as the white, elongated feature extending 1500 km westward of Arsia Mons. As a comparison, the cone-shaped volcano has a diameter of about 250 km; a view of the region with labels is provided here.

Mars just experienced its northern hemisphere winter solstice on 16 October. In the months leading up to the solstice, most cloud activity disappears over big volcanoes like Arsia Mons; its summit is covered with clouds throughout the rest of the martian year.

However, a seasonally recurrent water ice cloud, like the one shown in this image, is known to form along the southwest flank of this volcano – it was previously observed by Mars Express and other missions in 2009, 2012 and 2015.

October 24th, 2018

NASA’s InSight Will Study Mars While Standing Still

InSight Deploys its Instruments: This artist’s concept depicts NASA’s InSight lander after it has deployed its instruments on the Martian surface. Credit: NASA/JPL-Caltech.

You don’t need wheels to explore Mars.

After touching down in November, NASA’s InSight spacecraft will spread its solar panels, unfold a robotic arm … and stay put. Unlike the space agency’s rovers, InSight is a lander designed to study an entire planet from just one spot.

This sedentary science allows InSight to detect geophysical signals deep below the Martian surface, including marsquakes and heat. Scientists will also be able to track radio signals from the stationary spacecraft, which vary based on the wobble in Mars’ rotation. Understanding this wobble could help solve the mystery of whether the planet’s core is solid.

Here are five things to know about how InSight conducts its science:

October 23rd, 2018

Mars could have enough molecular oxygen to support life, and scientists figured out where to find it

Mars as seen by NASA’s Hubble Space Telescope on July 18, near its closest approach to Earth since 2003. (NASA / ESA / STScI)

Modern-day Mars may be more hospitable to oxygen-breathing life than previously thought.

A new study suggests that salty water at or near the surface of the red planet could contain enough dissolved O2 to support oxygen-breathing microbes, and even more complex organisms such as sponges.

“Nobody thought of Mars as a place where aerobic respiration would work because there is so little oxygen in the atmosphere,” said Vlada Stamenković, an Earth and planetary scientist at the Jet Propulsion Laboratory who led the work. “What we’re saying is it is possible that this planet that is so different from Earth could have given aerobic life a chance.”

As part of the report, Stamenković and his coauthors also identified which regions of Mars are most likely to contain brines with the greatest amounts of dissolved oxygen. This could help NASA and other space agencies plan where to send landers on future missions, they said.

The work was published Monday in Nature Geoscience.

October 3rd, 2018

Learn To Farm On Mars With This Fake Martian Soil

Fig. 1. Comparison of martian simulants. (a) MAHLI image of the scooped Rocknest soil; image credit NASA/JPL-Caltech/MSSS. (b) Photograph of MGS-1 prototype simulant produced for this work. (c) Photograph of JSC Mars-1. (d) Photograph of MMS-1 sold by the Martian Garden company.

If you watched or read “The Martian,” and wanted to try your hand at living on Mars or becoming a Martian farmer like Mark Watney, then today is your lucky day. Astrophysicists at the University of Central Florida have developed a scientific, standardized method to create soil like future space colonies might encounter on Mars. They’re selling it for about $10 per pound (or $20 per kilogram) plus shipping.

This soil, also called simulant, is designed and created to mimic the red soil on Mars. From how fine the grains are to what minerals are present, this simulant is about as close as you can get to real Martian soil. These researchers have also created an asteroid simulant and are working on developing a wider variety of simulants, like ones to mimic soils from different parts of Mars.

The only parts of the simulants that don’t match the real thing are the toxic, carcinogenic, or otherwise dangerous components that exist in actual asteroids or in real Martian soil. “We leave out the dangerous stuff,” said Dan Britt, a physics professor and member of the UCF Planetary Sciences Group working on creating these simulants.