MarsNews.com
May 14th, 2019

A New Idea for Putting Out Fires in Space: The Vacuum Cleaner?

ESA astronaut Alexander Gerst (white shirt) and NASA astronaut Reid Wiseman (blue) practice a fire drill training in NASA’s Space Station mock-up in Houston, TX. (Image Credit: NASA)

Current safety regulations ensure that only low-flammable materials are brought into space. Fires in locations like the International Space Station (ISS), however, are still possible.

Short circuits happen, for example. Cosmic rays may cause structural damage to materials, altering their flammability.

At present, the ISS has a CO2 gas extinguisher, combined with a water mist, to dilute the local oxygen concentration and remove heat.

The method, however, leaves harmful fumes in the enclosed space. Crewmembers who put out the fires must put on oxygen masks due to the risk of the high concentration of CO2 in the cabin.

Researchers from the Toyohashi University of Technology in Japan have developed a new type of fire extinguisher that is optimized for space-use and does not require the use of any oxygen masks.

The Vacuum Extinguish Method (VEM), a concept demonstrated in the academic journal Fire Technology, is a bit like the hoover in your living room, says lead researcher Dr. Yuji Nakamura.

“Think of it as simply sucking the flame like a vacuum cleaner to ‘clean up’ your firing zone,” Dr. Nakamura told Tech Briefs. “Then, the flame, as well as any other harmful products, is sucked in.”

The extinguishing system has two boxes. Once the first vacuum box is filled, a valve opens, sending the collected gas to the second container; the first box, meanwhile, continues its vacuuming.

April 25th, 2019

Dartmouth’s Mars Greenhouse Wins 2019 NASA BIG Idea Challenge

A team of Dartmouth engineering students has been named winners of the 2019 NASA BIG Idea Challenge for its innovative design for a Mars greenhouse that can grow food and sustain a crew of astronauts on a future mission to the red planet.

The team, made up of undergraduates at Dartmouth’s Thayer School of Engineering, pitched their winning proposal to top scientists at NASA and National Institute of Aerospace at NASA’s Langley Research Center this week in Hampton, Virginia, where they competed against four other top university-team finalists for the top honor.

“The BIG Idea Challenge has been an amazing experience and I’m thrilled that we won,” said Zoe Rivas ’18, co-manager of the Dartmouth team. “I’m so excited to see what happens next with our greenhouse design and what NASA will do with all of the great ideas we saw in this competition.”

This is the first time that a Dartmouth team has entered – and won – NASA’s Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge, a national engineering competition that elicits solutions from some of the best and brightest students for some of NASA’s pressing, real-time space exploration challenges.

The team’s greenhouse design, initially conceived as the students’ senior capstone project, won for its innovation in food production and crop cultivation, as well as mechanical and aerospace engineering elements of the design.

“I can’t begin to explain how exciting this is,” said Alexa Escalona ’18, the team’s co-manager. “This validates all of the late nights and hard work.”

April 19th, 2019

Fabric from University of North Dakota developed spacesuit to spend year in space

NDX-1 Mars Prototype Suit

Pieces of fabric from the University of North Dakota-developed NDX-1 spacesuit was launched into space aboard a Northrup Grumman “NG CRS-11 Cygnus” Resupply Mission, on Wednesday, on its way to the International Space Station (ISS).

The launch took place at the Wallops Flight Facility in Greenbelt, Md. Wallops is operated by the NASA Goddard Space Flight Center.
NASA selected five technologies to test as part of its Materials International Space Station Experiment (MISSE)-11 mission, including the NDX-1 spacesuit sample provided by the UND Space Studies Department.

The MISSE program provides long-term exposure of materials to the inhospitable environments of the space environment, according to Pablo de León, a space studies professor at UND and primary inventor of the NDX-1 suit. All the materials are slated to remain in space for at least one year, allowing researchers to assess the long-term impact of temperature extremes and radiation on their performance.
MISSE has been a successful part of ISS research since 2001 when its original flight hardware became the first payload to be installed on the outside of the space station.

April 12th, 2019

This technology would place humans traveling to Mars in a ‘sleep-like state’

SpaceWorks torpor habitat concept rendering (Photo: SpaceWorks)

SpaceWorks submitted a proposal to NASA in 2013 outlining technology that focused not on propulsion or advanced materials, but instead on affecting human biological systems and astronauts’ deep space travel habitat.

Its plan is simple: put the astronauts to sleep for about 80% of their voyage.

“I encountered this technology in the medical field called therapeutic hypothermia that places an individual into an inactive kind of sleep-like state,” said Bradford. “And they would cool the patient down for two or three days at a time, and that basically gives the body time to recover.”

According to Bradford, therapeutic hypothermia would provide a myriad of benefits. The crew would see reductions in the rates of muscle atrophy and bone loss from the lower metabolic state. He argues there is evidence that a “torpor state” could help build radiation shielding. Additionally, the space vessel would be stripped down to only the parts necessary to maintain the temperature of the habitat.

One design cuts the weight of NASA reference model from 45 tons to 20 tons for the SpaceWorks vessel for the same mission.

April 9th, 2019

NASA Selects Two New Space Tech Research Institutes for Smart Habitats

Illustration of the interior of a deep space habitat
Credits: NASA

As exploration missions venture beyond low-Earth orbit and to the Moon — and eventually Mars — NASA must consider automated technologies to keep habitats operational even when they are not occupied by astronauts. To help achieve this, NASA has selected two new Space Technology Research Institutes (STRIs) to advance space habitat designs using resilient and autonomous systems.

The selected proposals create two multi-disciplinary, university-led research institutes to develop technologies critical to a sustainable human presence on the Moon and Mars. The smart habitat, or SmartHab, research will complement other NASA projects to help mature the mission architecture needed to meet challenging exploration goals.

“Partnering with universities lets us tap into new expertise, foster innovative ideas, as well as expand the research and development talent base for both aerospace and broader applications,” said Jim Reuter, acting associate administrator of NASA’s Space Technology Mission Directorate. “We’re excited to work with these two new STRIs to develop smart habitat technologies for exploration missions on the Moon and Mars.”

Each STRI will receive as much as $15 million over a five-year period.

April 2nd, 2019

Latest Updates from NASA on 3D-Printed Habitat Competition

Team SEArch+/Apis Cor won first place in the Phase 3: Level 4 software modeling stage of NASA’s 3D-Printed Habitat Challenge. The unique shape of their habitat allows for continuous reinforcement of the structure. Light enters through trough-shaped ports on the sides and top.
Credits: Team SEArch+/Apis Cor

The 3D-Printed Habitat Challenge is a competition to create sustainable shelters suitable for the Moon, Mars or beyond using resources available on-site in these locations. The multi-level 3D-Printed Habitat Challenge puts teams to the test in several areas of 3D-printing, including modeling software, material development and construction. In addition to aiding human space exploration, technologies sought from this competition could also lead to lower-cost housing solutions on Earth and other benefits.

Teams competing in NASA’s 3D-Printed Habitat Challenge completed the latest level of the competition – complete virtual construction – and the top three were awarded a share of the $100,000 prize purse. This stage of the challenge required teams to create a full-scale habitat design, using modeling software. This level built upon an earlier stage that also required virtual modeling.

Eleven team entries were scored and awarded points based on architectural layout, programming, efficient use of interior space, and the 3D-printing scalability and constructability of the habitat. Teams also prepared short videos providing insight into their designs as well as miniature 3D-printed models that came apart to showcase the interior design. Points were also awarded for aesthetic representation and realism. After evaluation by a panel of judges, NASA and challenge partner Bradley University of Peoria, Illinois, awarded the following teams:

1. SEArch+/Apis Cor – New York – $33,954.11
2. Zopherus – Rogers, Arkansas – $33,422.01
3. Mars Incubator – New Haven, Connecticut – $32,623.88

The 3D-Printed Habitat Challenge will culminate with a head-to-head subscale structure print May 1-4, 2019, and the awarding of an $800,000 prize purse. Media and the public will be invited to attend the event in Peoria, Illinois.

March 29th, 2019

NASA’s Mars Helicopter Completes Flight Tests

Members of the NASA Mars Helicopter team inspect the flight model (the actual vehicle going to the Red Planet), inside the Space Simulator, a 25-foot-wide (7.62-meter-wide) vacuum chamber at NASA’s Jet Propulsion Laboratory in Pasadena, California, on Feb. 1, 2019. Image Credit: NASA/JPL-Caltech

Since the Wright brothers first took to the skies of Kill Devil Hills, North Carolina, Dec. 17, 1903, first flights have been important milestones in the life of any vehicle designed for air travel. After all, it’s one thing to design an aircraft and make it fly on paper – or computer. It is quite another to put all the pieces together and watch them get off the ground.

In late January 2019, all the pieces making up the flight model (actual vehicle going to the Red Planet) of NASA’s Mars Helicopter were put to the test.

Weighing in at no more than 4 pounds (1.8 kilograms), the helicopter is a technology demonstration project currently going through the rigorous verification process certifying it for Mars.

The majority of the testing the flight model is going through had to do with demonstrating how it can operate on Mars, including how it performs at Mars-like temperatures. Can the helicopter survive – and function – in cold temperatures, including nights with temperatures as low as minus 130 degrees Fahrenheit (minus 90 degrees Celsius)?

All this testing is geared towards February 2021, when the helicopter will reach the surface of the Red Planet, firmly nestled under the belly of the Mars 2020 rover. A few months later, it will be deployed and test flights (up to 90 seconds long) will begin – the first from the surface of another world.

March 22nd, 2019

NASA films fascinating SpaceX Falcon 9 reentry, paving way for Mars missions

As NASA eyes future missions to Mars, it needs to accumulate data on how large-payload rockets behave in atmospheric reentry conditions. A recent collaboration between NASA and SpaceX allowed the space agency to capture some unique data on the reentry of a large rocket under Mars-like conditions in the upper atmosphere. Thermal video of the event is not only full of useful scientific data, it’s cool to watch.

The video follows the path of the Falcon 9 first stage, which is the largest section of the rocket. It’s what launches the payload from the launch pad and takes it most of the way into orbit. After the second stage separates to complete the job, the first stage is either discarded, or recovered. Perfecting a method of landing and recovering the first stage is what SpaceX is working on right now (the Falcon 9R).

The Falcon 9 is a perfect vehicle to provide this sort of reentry data because its first stage is capable of powered descent. Specifically, part of the return procedure is firing the rocket engines in retrograde, or in the direction of travel. NASA calls this supersonic retro-propulsion. This is the part of landing where the rocket slows its descent, and would be an important component of future Mars missions, both manned and unmanned.

March 18th, 2019

Is the best way to communicate with future astronauts on Mars by texting?

Shannon Kobs Nawotniak

Texting may be one of the best ways to communicate with future astronauts on Mars and other planets.

This is one of the conclusions of a study published by Idaho State University geosciences Associate Professor Shannon Kobs Nawotniak in a special collection edition of the journal Astrobiology that was published March.

The article she was the main author on was titled “Opportunities and Challenges of Promoting Scientific Dialog throughout Execution of Future Science-Driven Extravehicular Activity.” In this article Nawotniak compared communicating through voice, video, still images, text messaging and other methods.

“Text-based communication is far preferable to audio transmission over latency [the time delay caused by the distance between the planets], allowing message recipients to prioritize their own tasks in the moment and maintain a written record of communication for review throughout the EVA (extravehicular activity or “spacewalk”) as desired,” she said in the article.

Texting has several other advantages and could be used in conjunction with other communication methods.

March 12th, 2019

94-year old Lithium-Ion battery inventor unveils new ultra-efficient glass battery

John Goodenough, co-inventor of the lithium-ion battery

John B. Goodenough, an emeritus professor at the Cockrell School of Engineering at the University of Texas, Austin, pioneered the lithium-ion battery technology that is now the industry standard, and now the 94-year-old is ready to push the envelope on battery innovation again. Goodenough along with senior research fellow Maria Helena Braga, lead a team of researchers who have developed a low-cost all-solid-state battery that is safer and more efficient than existing lithium-ion technology.

The new battery uses a sodium- or lithium-coated glass electrolyte that has triple the storage capacity of a lithium ion battery. It also charges in minutes instead of hours and operates in both frigid and hot weather (from -20 to 60 degrees centigrade). Early tests suggest the battery is capable of at least 1,200 charge-discharge cycles, significantly more charging cycles than a comparable lithium-ion battery, and best of all, the glass-based electrolyte will not form the dendrites that plague lithium-ion battery technology. The dendrites accumulate as part of the standard charging and recharging cycle and eventually cause a short circuit that often results in a smoldering or burning battery.