MarsNews.com
April 3rd, 2019

After the Moon in 2024, NASA wants to reach Mars by 2033

NASA Administrator Jim Bridenstine (L)—seen here at the US space agency’s headquarters in November 2018—says the acceleration of the calendar for a new Moon mission is “aggressive” but doable, and vital for any future Mars mission

NASA has made it clear they want astronauts back on the Moon in 2024, and now, they are zeroing in on the Red Planet—the US space agency confirmed that it wants humans to reach Mars by 2033.

Jim Bridenstine, NASA’s administrator, said Tuesday that in order to achieve that goal, other parts of the program—including a lunar landing—need to move forward more quickly.

“We want to achieve a Mars landing in 2033,” Bridenstine told lawmakers at a congressional hearing on Capitol Hill.

“We can move up the Mars landing by moving up the Moon landing. The Moon is the proving ground,” added the former Republican congressman, who was appointed by President Donald Trump.

NASA is racing to enact the plans of Trump, who dispatched Vice President Mike Pence to announce that the timetable for once again putting man on the Moon had been cut by four years to 2024.

The new date is politically significant: it would be the final year in Trump’s eventual second term at the White House.

April 2nd, 2019

Latest Updates from NASA on 3D-Printed Habitat Competition

Team SEArch+/Apis Cor won first place in the Phase 3: Level 4 software modeling stage of NASA’s 3D-Printed Habitat Challenge. The unique shape of their habitat allows for continuous reinforcement of the structure. Light enters through trough-shaped ports on the sides and top.
Credits: Team SEArch+/Apis Cor

The 3D-Printed Habitat Challenge is a competition to create sustainable shelters suitable for the Moon, Mars or beyond using resources available on-site in these locations. The multi-level 3D-Printed Habitat Challenge puts teams to the test in several areas of 3D-printing, including modeling software, material development and construction. In addition to aiding human space exploration, technologies sought from this competition could also lead to lower-cost housing solutions on Earth and other benefits.

Teams competing in NASA’s 3D-Printed Habitat Challenge completed the latest level of the competition – complete virtual construction – and the top three were awarded a share of the $100,000 prize purse. This stage of the challenge required teams to create a full-scale habitat design, using modeling software. This level built upon an earlier stage that also required virtual modeling.

Eleven team entries were scored and awarded points based on architectural layout, programming, efficient use of interior space, and the 3D-printing scalability and constructability of the habitat. Teams also prepared short videos providing insight into their designs as well as miniature 3D-printed models that came apart to showcase the interior design. Points were also awarded for aesthetic representation and realism. After evaluation by a panel of judges, NASA and challenge partner Bradley University of Peoria, Illinois, awarded the following teams:

1. SEArch+/Apis Cor – New York – $33,954.11
2. Zopherus – Rogers, Arkansas – $33,422.01
3. Mars Incubator – New Haven, Connecticut – $32,623.88

The 3D-Printed Habitat Challenge will culminate with a head-to-head subscale structure print May 1-4, 2019, and the awarding of an $800,000 prize purse. Media and the public will be invited to attend the event in Peoria, Illinois.

April 1st, 2019

Mars Express matches methane spike measured by Curiosity

Mars Express results ESA/Giuranna et al (2019)

A reanalysis of data collected by ESA’s Mars Express during the first 20 months of NASA’s Curiosity mission found one case of correlated methane detection, the first time an in-situ measurement has been independently confirmed from orbit.

Reports of methane in the martian atmosphere have been intensely debated, with Mars Express contributing one of the first measurements from orbit in 2004, shortly after its arrival at the Red Planet.

The molecule attracts such attention because on Earth methane is generated by living organisms, as well as geological processes. Because it can be destroyed quickly by atmospheric processes, any detection of the molecule in the martian atmosphere means it must have been released relatively recently – even if the methane itself was produced millions or billions of years ago and lay trapped in underground reservoirs until now.

While spacecraft and telescopic observations from Earth have in general reported no or very low detections of methane, or measurements right at the limit of the instruments’ capabilities, a handful of spurious spikes, along with Curiosity’s reported seasonal variation at its location in Gale Crater, raise the exciting question of how it is being generated and destroyed in present times.

Now, for the first time, a strong signal measured by the Curiosity rover on 15 June 2013 is backed up by an independent observation by the Planetary Fourier Spectrometer (PFS) onboard Mars Express the next day, as the spacecraft flew over Gale Crater.

March 29th, 2019

NASA’s Mars Helicopter Completes Flight Tests

Members of the NASA Mars Helicopter team inspect the flight model (the actual vehicle going to the Red Planet), inside the Space Simulator, a 25-foot-wide (7.62-meter-wide) vacuum chamber at NASA’s Jet Propulsion Laboratory in Pasadena, California, on Feb. 1, 2019. Image Credit: NASA/JPL-Caltech

Since the Wright brothers first took to the skies of Kill Devil Hills, North Carolina, Dec. 17, 1903, first flights have been important milestones in the life of any vehicle designed for air travel. After all, it’s one thing to design an aircraft and make it fly on paper – or computer. It is quite another to put all the pieces together and watch them get off the ground.

In late January 2019, all the pieces making up the flight model (actual vehicle going to the Red Planet) of NASA’s Mars Helicopter were put to the test.

Weighing in at no more than 4 pounds (1.8 kilograms), the helicopter is a technology demonstration project currently going through the rigorous verification process certifying it for Mars.

The majority of the testing the flight model is going through had to do with demonstrating how it can operate on Mars, including how it performs at Mars-like temperatures. Can the helicopter survive – and function – in cold temperatures, including nights with temperatures as low as minus 130 degrees Fahrenheit (minus 90 degrees Celsius)?

All this testing is geared towards February 2021, when the helicopter will reach the surface of the Red Planet, firmly nestled under the belly of the Mars 2020 rover. A few months later, it will be deployed and test flights (up to 90 seconds long) will begin – the first from the surface of another world.

March 27th, 2019

Rivers raged on Mars late into its history

via GIPHY

Long ago on Mars, water carved deep riverbeds into the planet’s surface—but we still don’t know what kind of weather fed them. Scientists aren’t sure, because their understanding of the Martian climate billions of years ago remains incomplete.

A new study by University of Chicago scientists catalogued these rivers to conclude that significant river runoff persisted on Mars later into its history than previously thought. According to the study, published March 27 in Science Advances, the runoff was intense—rivers on Mars were wider than those on Earth today—and occurred at hundreds of locations on the red planet.

But it’s a puzzle why ancient Mars had liquid water. Mars has an extremely thin atmosphere today, and early in the planet’s history, it was also only receiving a third of the sunlight of present-day Earth, which shouldn’t be enough heat to maintain liquid water. “Indeed, even on ancient Mars, when it was wet enough for rivers some of the time, the rest of the data looks like Mars was extremely cold and dry most of the time,” Kite said.

Seeking a better understanding of Martian precipitation, Kite and his colleagues analyzed photographs and elevation models for more than 200 ancient Martian riverbeds spanning over a billion years. These riverbeds are a rich source of clues about the water running through them and the climate that produced it. For example, the width and steepness of the riverbeds and the size of the gravel tell scientists about the force of the water flow, and the quantity of the gravel constrains the volume of water coming through.

Their analysis shows clear evidence for persistent, strong runoff that occurred well into the last stage of the wet climate, Kite said.

March 26th, 2019

Op/Ed: How Capitalism Will Get Us to Mars and Beyond: Podcast

Today’s Reason Podcast conversation is with Michael Solana, a vice president at the venture capital firm Founders Fund. The firm, which is worth upwards of $3 billion, founded by Peter Thiel, PayPal co-founder Luke Nosek, former PayPal CFO Ken Howery, and Sean Parker of Napster and Facebook fame.

Some of the fund’s investments include SpaceX, Airbnb, Lyft, and Oculus, as well as variety of lesser-known companies in the realms of aerospace, biotechnology, energy, and internet technology.

I spoke with Michael about the future, which he thinks about a lot both as an investor in emerging technologies and as host of the official Founders Fund podcast Anatomy of Next, the latest season of which explores the ways technological advancements in rocketry, materials science, augmented reality, fertility science, and artificial intelligence will get humanity to Mars and beyond.

But Solana and his colleagues also believe that Silicon Valley is mired in groupthink and susceptible to the false promises of socialism. In this conversation, we talk about what Founders Fund is doing differently, why Solana believes capitalism is necessarily the engine of growth and innovation, the promise and perils of privatizing government functions, and what he’s learned from the famously contrarian Peter Thiel about what it means to be an independent thinker.

March 22nd, 2019

NASA films fascinating SpaceX Falcon 9 reentry, paving way for Mars missions

As NASA eyes future missions to Mars, it needs to accumulate data on how large-payload rockets behave in atmospheric reentry conditions. A recent collaboration between NASA and SpaceX allowed the space agency to capture some unique data on the reentry of a large rocket under Mars-like conditions in the upper atmosphere. Thermal video of the event is not only full of useful scientific data, it’s cool to watch.

The video follows the path of the Falcon 9 first stage, which is the largest section of the rocket. It’s what launches the payload from the launch pad and takes it most of the way into orbit. After the second stage separates to complete the job, the first stage is either discarded, or recovered. Perfecting a method of landing and recovering the first stage is what SpaceX is working on right now (the Falcon 9R).

The Falcon 9 is a perfect vehicle to provide this sort of reentry data because its first stage is capable of powered descent. Specifically, part of the return procedure is firing the rocket engines in retrograde, or in the direction of travel. NASA calls this supersonic retro-propulsion. This is the part of landing where the rocket slows its descent, and would be an important component of future Mars missions, both manned and unmanned.

March 20th, 2019

The road to Mars includes a detour through Lakewood, Colorado

The Mars Society has two practice Mars exploration sites, one of which is in a desert near Hanksville, Utah.

In Robert Zubrin’s Lakewood office hangs a photo he took in 2009 of a space shuttle taking off to repair the Hubble Space Telescope, a mission he strongly advocated for, despite pushback from former NASA Administrator Sean O’Keefe.

Zubrin, an aerospace engineer, sees two versions of the future for humanity. The first is where new worlds are being explored, and even if things can go wrong, there’s an optimistic future of infinite possibilities. The other future is bleak in which the world is crowded and lacks enough resources to go around.

“I want the first version, and Mars is the closest planet that has all the resources needed for life and civilization. If we can go there, that’s the first step in becoming a multi-planet species,” said Zubrin. “They say the Earth is only so big. It isn’t, because it comes with an infinite sky.”

Zubrin co-founded The Mars Society in 1998, a Lakewood based organization that is dedicated to human exploration and settlement on Mars. The organization, which has at least 7,000 members, works on public outreach and educational programs, political advocacy and research.

The Mars Society has two simulated sites that mirror conditions on Mars — one in the Canadian Arctic and the other in a Utah desert. The sites are used for practice Mars missions to further understand the technology and science needed for humans to operate on the planet. Crews of typically six people attempt to conduct a sustained program of field exploration while operating as if they are on Mars. In the Utah location, a crew found a dinosaur bone, something that Zubrin says a robotic rover might have missed.

March 19th, 2019

Minitremors detected on Mars for first time

NASA’s InSight lander places a protective, dome-shaped shield above its seismometer. JPL-CALTECH/NASA

After months of delicate maneuvering, NASA’s InSight lander has finished placing its hypersensitive seismometer on the surface of Mars. The instrument is designed to solve mysteries about the planet’s interior by detecting the booming thunder of “marsquakes.” But just a few weeks into its run, the car-size lander has already heard something else: the minute tremors that continually rock our red neighbor. If marsquakes are the drum solo, these microseisms, as they’re known, are the bass line.

The signal first became apparent in early February, as soon as the lander placed a protective shield over the seismometer, said Philippe Lognonné, a planetary seismologist at Paris Diderot University who heads the team that runs the instrument, in a talk here today at the annual Lunar and Planetary Science Conference. “We do believe that these signals are waves coming from Mars.” This is the first time, he said, that such microseisms have been detected on another planet.

On Earth, microseisms are ubiquitous, caused largely by the sloshing of the ocean by storms and tides. Mars, despite the dreams of science fiction writers, has no present-day oceans. Instead, this newly discovered noise is likely caused by low-frequency pressure waves from atmospheric winds that rattle the surface, inducing shallow, longer-period waves in the surface, called Rayleigh waves, Lognonné said.

March 18th, 2019

Is the best way to communicate with future astronauts on Mars by texting?

Shannon Kobs Nawotniak

Texting may be one of the best ways to communicate with future astronauts on Mars and other planets.

This is one of the conclusions of a study published by Idaho State University geosciences Associate Professor Shannon Kobs Nawotniak in a special collection edition of the journal Astrobiology that was published March.

The article she was the main author on was titled “Opportunities and Challenges of Promoting Scientific Dialog throughout Execution of Future Science-Driven Extravehicular Activity.” In this article Nawotniak compared communicating through voice, video, still images, text messaging and other methods.

“Text-based communication is far preferable to audio transmission over latency [the time delay caused by the distance between the planets], allowing message recipients to prioritize their own tasks in the moment and maintain a written record of communication for review throughout the EVA (extravehicular activity or “spacewalk”) as desired,” she said in the article.

Texting has several other advantages and could be used in conjunction with other communication methods.