MarsNews.com
April 7th, 2017

Two Cupertino students shine in Mars Medical Challenge

Lauren Lee, 12, a seventh-grader at Kennedy Middle School in Cupertino, shows off her 3-D printed drug-delivery device that will allow the user to inject any medically needed drug without assistance. Lauren was a winner in the “Mars Medical Challenge” sponsored by the American Society of Mechanical Engineers Foundation and with support from NASA. (Photograph by Jacqueline Ramseyer)

Lauren Lee, 12, a seventh-grader at Kennedy Middle School in Cupertino, shows off her 3-D printed drug-delivery device that will allow the user to inject any medically needed drug without assistance. Lauren was a winner in the “Mars Medical Challenge” sponsored by the American Society of Mechanical Engineers Foundation and with support from NASA. (Photograph by Jacqueline Ramseyer)

Two young Cupertino residents have been recognized for truly out-of-this world science projects.

Lauren Lee, 12, has been selected as a junior division winner of the “Mars Medical Challenge” sponsored by the American Society of Mechanical Engineers Foundation with technical support from NASA. Ansel Austin, 14, was selected as one of four finalists in the challenge’s teen division.

The challenge tasked youngsters nationwide with creating a digital model of a medical or dental device that is entirely 3-D printable and can be used by astronauts on a three-year round trip to Mars.

Lauren, a seventh-grader at Kennedy Middle School, created a drug delivery device, with inspiration from a family member.

Ansel, a freshman at Valley Christian, created the wearable “Flex Brace,” to protect astronauts’ bones.

April 5th, 2017

Mars rover spots clouds shaped by gravity waves

Panoramic image showing cirrus clouds in the Martian atmosphere, taken by the Opportunity rover in 2006. Credit: NASA/JPL/Cornell/M. Howard, T. Öner, D, Bouic & M. Di Lorenzo

Panoramic image showing cirrus clouds in the Martian atmosphere, taken by the Opportunity rover in 2006. Credit: NASA/JPL/Cornell/M. Howard, T. Öner, D, Bouic & M. Di Lorenzo

NASA’s Curiosity rover usually keeps its instruments firmly focused on Mars’s ground, zapping grit with its laser or drilling cores in bedrock. But every few days, the SUV-sized robot, like any good dreamer, shifts its sights upward to the clouds.

Well into its fifth year, the rover has now shot more than 500 movies of the clouds above it, including the first ground-based view of martian clouds shaped by gravity waves, researchers reported here this week at the Lunar and Planetary Science Conference. (Gravity waves, common atmospheric ripples on Earth that result from air trying to regain its vertical balance, should not be confused with gravitational waves, cosmological ripples in spacetime.) The shots are the best record made so far of a mysterious recurring belt of equatorial clouds known to influence the martian climate.

Understanding these clouds will help inform estimates of ground ice depth and perhaps recurring slope lineae, potential flows of salty water on the surface, says John Moores, a planetary scientist at York University in Toronto, Canada, who led the study with his graduate student, Jake Kloos. “If we wish to understand the water story of Mars’s past,” Moores says, “we first need to [separate out] contributions from the present-day water cycle.”

April 4th, 2017

Mars’ Trojans Show Remains of Ancient Planetoid

The paths traced by the known Martian Trojans around L4 or L5 (crosses) relative to Mars (red disk) and the Sun (yellow disk). The dotted circle indicates the average Sun-Mars distance. Right: Enlargement of inset (dashed rectangle) showing the paths of the 8 L5 Trojans: 1998 VF31 (marked as

The paths traced by the known Martian Trojans around L4 or L5 (crosses) relative to Mars (red disk) and the Sun (yellow disk). The dotted circle indicates the average Sun-Mars distance. Right: Enlargement of inset (dashed rectangle) showing the paths of the 8 L5 Trojans: 1998 VF31 (marked as “VF31” – blue), Eureka (red) and the 6 objects identified as family members (amber). The filled disks indicate the relative sizes of the asteroids. Eureka, the largest member, is about 2 km across. Figure credit: Apostolos Christou (E-mail: aac@arm.ac.uk)

Trojan asteroids are a fascinating thing. Whereas the most widely known are those that orbit Jupiter (around its L4 and L5 Lagrange Points), Venus, Earth, Mars, Uranus and Neptune have populations of these asteroids as well. Naturally, these rocky objects are a focal point for a lot of scientific research, since they can tell us much about the formation and early history of the Solar System.

And now, thanks to an international team of astronomers, it has been determined that the Trojan asteroids that orbit Mars are likely the remains of a mini-planet that was destroyed by a collision billions of years ago. Their findings are detailed in a paper that will be published in The Monthly Notices of the Royal Astronomical Society later this month.

For the sake of their study, the team – which was led by Galin Borisov and Apostolos Christou of the Armagh Observatory and Planetarium in Northern Ireland, examined the composition of Marian Trojans. This consisted of using spectral data obtained by the XSHOOTER spectrograph on the Very Large Telescope (VLT) and photometric data from the National Astronomical Observatory‘s two-meter telescope, and the William Herschel Telescope.

March 31st, 2017

NASA orbiter shows Mars lost 90 per cent of its CO2 to space

It vanished into thin air. Around 90 per cent of the Red Planet’s atmosphere was probably lost to space over just a few hundred million years, according to a key measurement from NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft.

Today Mars is a freezing, arid desert with an atmosphere 1 per cent as dense as Earth’s and its water mostly locked up in polar ice caps.

But most planetary scientists think it was not always so. Certain Mars soils contain minerals that on Earth are produced in the presence of water, and some Martian features seem to point towards ancient lakebeds and even fast-flowing rivers. To have retained this liquid water, the planet’s carbon dioxide-dominated atmosphere must once have been much thicker to limit surface evaporation.

MAVEN has been orbiting Mars since 2014 on a quest to find out where all that CO2 went. It could have gone into the ice caps, into the rocks as carbonate minerals or it could have been lost to space.

March 24th, 2017

‘Life’ horror movie sparks reality check on procedures for studying Mars samples

Rebecca Ferguson plays Miranda North, a planetary protection officer aboard the International Space Station, in the movie “Life.” (Sony Pictures Digital Productions)

Rebecca Ferguson plays Miranda North, a planetary protection officer aboard the International Space Station, in the movie “Life.” (Sony Pictures Digital Productions)

Spoiler Alert! This article doesn’t reveal any major plot twists, but wait to read it if you’re trying to stay totally in the dark about the plot of the movie “Life.”

Let sleeping Martians lie, particularly if they have a strong grip: That’s one of the lessons you could take away from “Life,” the first monster movie set on the International Space Station.

The movie – which opens today and stars Jake Gyllenhaal, Rebecca Ferguson and Ryan Reynolds – blends the gory horror of “Alien” with the harrowing suspense of “Gravity.” It’s a tour de force of simulated zero-G acrobatics (done mostly with ropes and wires). And it’s an orbital illustration of Murphy’s Law: Anything that can go wrong with having an alien on board does go wrong.

Purists may have questions about just how wrong it goes. Could a minuscule life form brought back from Mars really get that big that quickly? Is it really possible to combine neural, muscular and sensory functions in one cell? And just how easy is it for things to come loose (or get loose) on the space station?

The deepest question may well be, does this nightmare have any chance of happening in real life?

March 23rd, 2017

Mars Spacesuits: Designing a Blue-Collar Suit for the Red Planet

The MarsSuit Project is underway at UC Berkeley, led by professor Lawrence Kuznetz (right). Credit: Lawrence Kuznetz

The MarsSuit Project is underway at UC Berkeley, led by professor Lawrence Kuznetz (right).
Credit: Lawrence Kuznetz

The first explorers on Mars will need a new kind of spacesuit, and a university-based team has taken a novel approach to design the equipment.

Researchers have set up a “collaboratory” at the University of California, Berkeley, to come up with a spacesuit that will allow expeditionary crews to work effectively on Mars.

“The kind of suit that we’re talking about is a blue-collar suit. You’ve got to be able to be out and about on Mars 7 to 8 hours a day, seven days a week,” said project leader Lawrence Kuznetz, a UC Berkeley professor and former NASA engineer with a long history of investigating Mars spacesuit concepts.

About 50 Berkeley students are now taking part in this MarsSuit Project, via a design class that began in mid-January. That core group, Kuznetz said, is one slice of a larger, interactive talent pool that includes the University of Helsinki, Texas A&M University, the Massachusetts Institute of Technology, and students at the Technical University of Ljubljana in Slovenia and at other institutions, along with several NASA centers, nonprofits and private organizations, such as Paragon Space Development Corporation in Tucson, Arizona.

Teams have been established to delve into everything from hardware, soft goods and software to boots, gloves, thermal control and waste management.

“The long-range vision is to have this course semester after semester,” Kuznetz said, “with each semester building upon the work of the prior semester … all intent on maturing the MarsSuit design.”

March 22nd, 2017

Simulated Mars dust makes for weird 3D-printed objects

Copyright Fotec

Credit: ESA

When humans finally get to Mars, they’ll need to use local resources in their quest for survival. Mars has a lot of dust, and the European Space Agency is looking at how to transform it into useful 3D-printed objects. On Wednesday, the ESA posted the fascinating results of a 3D-printing test using simulated Mars soil on Wednesday.

The team 3D-printed an igloo-like structure and a wall corner. They’re sized for a small mouse, but they show that it’s possible to create sturdy objects using the local resources on Mars.

The researchers used a Mars soil simulant called JSC-Mars-1A, which contains volcanic material, mixed with phosphoric acid as a binder. The mixture was extruded through a nozzle and layered in typical 3D-printing fashion.

The igloo and corner won’t win many points for aesthetics, but that’s OK.

March 21st, 2017

President Trump signs bill authorizing NASA funding, Mars exploration

President Donald Trump speaks in the Oval Office of the White House in Washington, Tuesday, March 21, 2017, after signing a bill to increase NASA’s budget to $19.5 billion and directs the agency to focus human exploration of deep space and Mars. (Evan Vucci/Associated Press)

President Donald Trump speaks in the Oval Office of the White House in Washington, Tuesday, March 21, 2017, after signing a bill to increase NASA’s budget to $19.5 billion and directs the agency to focus human exploration of deep space and Mars. (Evan Vucci/Associated Press)

President Donald Trump signed a bill into law Tuesday that updates NASA’s mission to add exploration of Mars and authorizes $19.5 billion in spending for the U.S. space agency for the current budget year.

It’s the first time in seven years that there has been an authorization bill for the National Aeronautics and Space Administration, also known as NASA, said Sen. Ted Cruz, R-Texas, a chief sponsor of the bill. Cruz joined several astronauts and other lawmakers in the Oval Office to watch Trump sign the bill.

Last week, Trump sent Congress a budget proposal that would authorize $19.1 billion in agency spending next year. Congress appropriates funding for all government departments and agencies.

“For almost six decades, NASA’s work has inspired millions and millions of Americans to imagine distant worlds and a better future right here on earth,” Trump said. “I’m delighted to sign this bill. It’s been a long time since a bill like this has been signed, reaffirming our commitment to the core mission of NASA: human space exploration, space science and technology.”

The measure amends current law to add human exploration of the red planet as a goal for the agency. It supports use of the International Space Station through at least 2024, along with private sector companies partnering with NASA to deliver cargo and experiments, among other steps.

March 17th, 2017

Colonizing Mars Will Depend on Low-Tech Know-How

Credit: Thinkstock

Credit: Thinkstock

Colonizing Mars will be no easy feat. It will require billions of dollars and years of specialized research led by some of the smartest scientists and engineers in the world. It will demand advanced technologies, yet to be invented — new kinds of spacecraft, for example, advanced rocket propulsion, deep-space life-support systems and high-speed communications.

But when humans arrive at the Red Planet, their best chances for success and survival will depend on simple materials, low-tech solutions and a broad set of problem-solving skills that will allow people to adapt.

“Here on the Earth, when we go to a remote location to do an engineering development project, we’ve learned that taking high-tech equipment isn’t really the right approach. What you want is appropriate technology,” said planetary scientist Phil Metzger, who is also a co-founder of NASA Kennedy Space Center’s Swamp Works. “You want technology to be maintained using the local resources and local labor.”

March 16th, 2017

Budweiser Is Exploring How to Brew Beer on Mars

Credit: Budweiser

Credit: Budweiser

As scientists search for life on Mars and plot a way for people to live there in the future, Budweiser is hard at work figuring out how to make life in space a little more fun by developing a beer made just for the Red Planet.

Today at South by Southwest Interactive in Austin, Texas, Budweiser announced its plans to research and produce a microgravity brew, on a panel moderated by The Martian star, Kate Mara, with retired astronaut Clayton Anderson, who discussed the future of space colonization. Ricardo Marques, vp of Budweiser, and Val Toothman, Anheuser-Busch’s vp of marketing innovation, outlined the experiments and research that will go into the Martian beer.

The biggest challenge of brewing beer a space is the lack of gravity. “When you’re in a zero-gravity environment, a beverage with carbonation is going to be an issue,” Anderson explained. However, Budweiser is researching options to work with the micro-gravity environment that exists on Mars to develop a beer that can be consumed there.